forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt245.tex
1299 lines (1002 loc) · 51.6 KB
/
mt245.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt245.tex}
\versiondate{25.3.06}
\copyrightdate{1995}
\def\halfarrow{\rightharpoonup}
\loadeusm
\def\chaptername{Function spaces}
\def\sectionname{Convergence in measure}
\newsection{245}
I come now to an
important and interesting topology on the spaces $\eusm L^0$ and $L^0$.
I start with the definition (245A) and with properties which echo those
of the $L^p$ spaces for $p\ge 1$ (245D-245E). In 245G-245J I describe
the most useful relationships between this topology and the norm
topologies of the $L^p$ spaces. For $\sigma$-finite spaces, it is
metrizable (245Eb) and sequential convergence can be described in terms
of pointwise convergence of sequences of functions (245K-245L).
\leader{245A}{Definitions} Let $(X,\Sigma,\mu)$ be a measure space.
\header{245Aa}{\bf (a)} For any measurable set $F\subseteq X$ of
finite measure, we have a functional $\tau_F$ on
$\eusm L^0=\eusm L^0(\mu)$ defined by setting
\Centerline{$\tau_F(f)=\int|f|\wedge\chi F$}
\noindent for every $f\in\eusm L^0$.
\cmmnt{(The integral exists in $\Bbb R$ because $|f|\wedge\chi F$
belongs to
$\eusm L^0$ and is dominated by the integrable function $\chi F$).}
Now $\tau_F(f+g)\le\tau_F(f)+\tau_F(g)$ whenever $f$, $g\in\eusm L^0$.
\prooflet{\Prf\ We need only observe that
\Centerline{$\min(|(f+g)(x)|,\chi F(x))
\le\min(|f(x)|,\chi F(x))+\min(|g(x)|,\chi F(x))$}
\noindent for every $x\in\dom f\cap\dom g$, which is almost every
$x\in X$.\ \QeD}
Consequently, setting $\rho_F(f,g)=\tau_F(f-g)$,\cmmnt{ we have
\Centerline{$\rho_F(f,h)=\tau_F((f-g)+(g-h))
\le\tau_F(f-g)+\tau_F(g-h)=\rho_F(f,g)+\rho_F(g,h)$,}
\Centerline{$\rho_F(f,g)=\tau_F(f-g)\ge 0$,}
\Centerline{$\rho_F(f,g)=\tau_F(f-g)=\tau_F(g-f)=\rho_F(g,f)$}
\noindent for all $f$, $g$, $h\in\eusm L^0$;
that is,} $\rho_F$ is a pseudometric on $\eusm L^0$.
\header{245Ab}{\bf (b)} The family
\Centerline{$\{\rho_F:F\in\Sigma,\,\mu F<\infty\}$}
\noindent now defines a topology on $\eusm L^0$\cmmnt{ (2A3F)}; I
will call it the topology of
{\bf convergence in measure} on $\eusm L^0$.
\header{245Ac}{\bf (c)} If $f$, $g\in\eusm L^0$ and $f\eae g$,
then\cmmnt{ $|f|\wedge\chi F\eae|g|\wedge\chi F$ and}
$\tau_F(f)=\tau_F(g)$, for
every set $F$ of finite measure. Consequently we have functionals
$\bar\tau_F$ on $L^0=L^0(\mu)$ defined by writing
\Centerline{$\bar\tau_F(f^{\ssbullet})=\tau_F(f)$}
\noindent whenever $f\in\eusm L^0$, $F\in\Sigma$ and $\mu F<\infty$.
Corresponding to these we have pseudometrics $\bar\rho_F$ defined by
either of the formulae
\Centerline{$\bar\rho_F(u,v)=\bar\tau_F(u-v)$,
\quad$\bar\rho_F(f^{\ssbullet},g^{\ssbullet})=\rho_F(f,g)$}
\noindent for $u$, $v\in L^0$, $f$, $g\in\eusm L^0$ and $F$ of finite
measure. The family of these pseudometrics defines the {\bf topology
of convergence in measure} on $L^0$.
\spheader 245Ad I shall allow myself to say that a sequence
(in $\eusm L^0$ or $L^0$) {\bf converges in measure} if it converges
for the
topology of convergence in measure\cmmnt{ (in the sense of 2A3M)}.
\cmmnt{
\leader{245B}{Remarks (a)} Of course the topologies of $\eusm L^0$,
$L^0$ are about as closely related as it is possible for them to be.
Not only is the topology of $L^0$ the quotient of the topology on
$\eusm L^0$ (that is, a set $G\subseteq L^0$ is open iff
$\{f:f^{\ssbullet}\in G\}$ is open in $\eusm L^0$), but every open set in
$\eusm L^0$ is the
inverse image under the quotient map of an open set in $L^0$.
\header{245Bb}{\bf (b)}
It is convenient to note that if $F_0,\ldots,F_n$ are measurable sets of
finite measure with union $F$, then, in the notation of 245A,
$\tau_{F_i}\le\tau_{F}$ for every $i$; this
means that a set $G\subseteq \eusm L^0$ is open for the topology of
convergence in measure iff for every $f\in G$ we can find a single set
$F$ of finite measure and a $\delta>0$ such that
\Centerline{$\rho_F(g,f)\le\delta\Longrightarrow g\in G$.}
\noindent Similarly, a set $G\subseteq L^0$ is open for the topology of
convergence in measure iff for every $u\in G$ we can find a set
$F$ of finite measure and a $\delta>0$ such that
\Centerline{$\bar\rho_F(v,u)\le\delta\Longrightarrow v\in G$.}
\header{245Bc}{\bf (c)} The phrase `topology of convergence in
measure' agrees well enough with standard usage when
$(X,\Sigma,\mu)$ is totally finite. But a {\bf warning!} the phrase
`topology of convergence in measure' is also used for the topology
defined by the metric of 245Ye below, even when $\mu X=\infty$. I have
seen the phrase {\bf local convergence in measure} used for the topology
of 245A. Most authors ignore
non-$\sigma$-finite spaces in this context. However I hold that
245D-245E below are of sufficient interest to make the extension
worth while.
}%end of comment
\leader{245C}{Pointwise convergence}\cmmnt{ The topology of
convergence in measure is almost definable in terms of `pointwise convergence', which is one of the roots of measure theory. The
correspondence is closest in $\sigma$-finite measure spaces (see 245K),
but there is still a very important relationship in the general case, as
follows.} Let $(X,\Sigma,\mu)$ be a measure space, and write $\eusm
L^0=\eusm L^0(\mu)$, $L^0=L^0(\mu)$.
\spheader 245Ca If $\sequencen{f_n}$ is a sequence in $\eusm L^0$
converging almost everywhere to $f\in\eusm L^0$, then
$\sequencen{f_n}\to f$ in measure. \prooflet{\Prf\ By 2A3Mc, I have
only to show that $\lim_{n\to\infty}\rho_F(f_n,f)=0$ whenever
$\mu F<\infty$. But $\sequencen{|f_n-f|\wedge\chi F}$ converges to $0$
a.e.\ and is dominated by the integrable function $\chi F$, so by
Lebesgue's Dominated Convergence Theorem
\Centerline{$\lim_{n\to\infty}\rho_F(f_n,f)
=\lim_{n\to\infty}\int|f_n-f|\wedge\chi F=0$. \Qed}}
\spheader 245Cb \cmmnt{ To formulate a corresponding result applicable
to $L^0$, we need the following concept. If $\sequencen{f_n}$,
$\sequencen{g_n}$ are sequences in $\eusm L^0$ such that
$f_n^{\ssbullet}=g_n^{\ssbullet}$ for every $n$, and $f$,
$g\in\eusm L^0$ are such that $f^{\ssbullet}=g^{\ssbullet}$, and
$\sequencen{f_n}\to f$ a.e., then $\sequencen{g_n}\to g$
a.e.\prooflet{, because
$$\eqalign{\{x:x\in\dom f&\cap\dom g\cap\bigcap_{n\in\Bbb N}\dom
f_n\cap\bigcap_{n\in\Bbb N}g_n,\cr
&g(x)=f(x)=\lim_{n\to\infty}f_n(x),\,f_n(x)
=g_n(x)\Forall n\in \Bbb N\}\cr}$$
\noindent is conegligible}. Consequently we have a definition
applicable to sequences in $L^0$; we can say that, for}
\dvro{For}{} $f$, $f_n\in\eusm L^0$,
$\sequencen{f_n^{\ssbullet}}$ is {\bf order*-convergent}, or {\bf
order*-converges}, to $f^{\ssbullet}$ iff $f\eae\lim_{n\to\infty}f_n$. In\cmmnt{ this case, of course, $\sequencen{f_n}\to f$ in
measure. Thus, in} $L^0$, a sequence $\sequencen{u_n}$ which
order*-converges to $u\in L^0$ also converges to $u$ in measure.
\cmmnt{\medskip
\noindent{\bf Remark} I suggest alternative descriptions of
order-convergence in 245Xc; the conditions (iii)-(vi) there are in
forms adapted to more general structures.
}%end of comment
\spheader 245Cc\cmmnt{ For a typical example of a sequence which is
convergent in measure without being order-convergent, consider the
following.} Take $\mu$ to be Lebesgue measure on $[0,1]$, and set
$f_n(x)=2^m$ if $x\in[2^{-m}k,2^{-m}(k+1)]$, $0$ otherwise, where
$k=k(n)\in\Bbb N$, $m=m(n)\in\Bbb N$ are defined by saying that
$n+1=2^{m}+k$ and $0\le k<2^m$. Then $\sequencen{f_n}\to 0$ for the
topology of convergence in measure\cmmnt{ (since $\rho_F(f_n,0)\le
2^{-m}$ if $F\subseteq[0,1]$ is measurable and
$2^m-1\le n$)}, though $\sequencen{f_n}$ is not convergent
to $0$ almost everywhere\cmmnt{ (indeed,
$\limsup_{n\to\infty}f_n=\infty$ everywhere)}.
\leader{245D}{Proposition} Let $(X,\Sigma,\mu)$ be any measure space.
(a) The topology of convergence in measure is a linear space topology
on $L^0=L^0(\mu)$.
(b) The maps $\vee$, $\wedge:L^0\times L^0\to L^0$, and $u\mapsto|u|$,
$u\mapsto u^+$, $u\mapsto u^-:L^0\to L^0$ are all continuous.
(c) The map $\times:L^0\times L^0\to L^0$ is continuous.
(d) For any continuous function $h:\Bbb R\to\Bbb R$, the corresponding
function $\bar h:L^0\to L^0$\cmmnt{ (241I)} is continuous.
\proof{{\bf (a)} The point is that the functionals $\bar\tau_F$,
as defined in 245Ac, are F-seminorms in the sense of 2A5B. \Prf\
Fix a set $F\in\Sigma$ of finite measure. I noted in 245Aa that
\Centerline{$\tau_F(f+g)\le\tau_F(f)+\tau_F(g)$ for
all $f$, $g\in\eusm L^0$,}
\noindent so
\Centerline{$\bar\tau_F(u+v)\le\bar\tau_F(u)+\bar\tau_F(v)$ for
all $u$, $v\in L^0$.}
\noindent Next,
$$\eqalignno{\bar\tau_F(cu)&\le\bar\tau_F(u)\text{ whenever }u\in L^0
\text{ and }|c|\le 1&\text{(*)}\cr}$$
\noindent because $|cf|\wedge\chi F\leae|f|\wedge\chi F$ whenever
$f\in\eusm L^0$ and $|c|\le 1$. Finally, given $u\in L^0$ and
$\epsilon>0$, let $f\in\eusm L^0$ be such that $f^{\ssbullet}=u$. Then
\Centerline{$\lim_{n\to\infty}|2^{-n}f|\wedge\chi F=0$ a.e.,}
\noindent so by Lebesgue's Dominated Convergence Theorem
\Centerline{$\lim_{n\to\infty}\bar\tau_F(2^{-n}u)
=\lim_{n\to\infty}\int|2^{-n}f|\wedge\chi F=0$,}
\noindent and there is an $n$ such that
$\bar\tau_F(2^{-n}u)\le\epsilon$. It follows (by (*) just above)
that $\bar\tau_F(cu)\le\epsilon$ whenever $|c|\le 2^{-n}$. As
$\epsilon$ is arbitrary, $\lim_{c\to 0}\bar\tau_F(u)=0$ for every
$u\in L^0$; which is the third condition in 2A5B.\ \Qed
Now 2A5B tells us that the topology defined by the $\bar\tau_F$ is
a linear space topology.
\medskip
{\bf (b)} For any $u$, $v\in L^0$, $||u|-|v||\le|u-v|$, so
$\bar\rho_F(|u|,|v|)\le\bar\rho_F(u,v)$ for every set $F$ of finite
measure. By 2A3H, $|\,\,|:L^0\to L^0$ is continuous. Now
\Centerline{$u\vee v=\Bover12(u+v+|u-v|)$,
\quad$u\wedge v=\Bover12(u+v-|u-v|)$,}
\Centerline{$u^+=u\wedge 0$,
\quad$u^-=(-u)\wedge 0$.}
\noindent As addition and subtraction are continuous, so are $\vee$,
$\wedge$, $^+$ and $^-$.
\medskip
{\bf (c)} Take $u_0$, $v_0\in L^0$, $F\in\Sigma$ a set of finite
measure and $\epsilon>0$. Represent $u_0$ and $v_0$ as
$f_0^{\ssbullet}$, $g_0^{\ssbullet}$ respectively, where $f_0$,
$g_0:X\to\Bbb R$ are $\Sigma$-measurable (241Bk). If we set
\Centerline{$F_m=\{x:x\in F,\,|f_0(x)|+|g_0(x)|\le m\}$,}
\noindent then $\sequence{m}{F_m}$ is a non-decreasing sequence of sets
with union $F$, so there is an $m\in\Bbb N$ such that $\mu(F\setminus
F_m)\le\bover12\epsilon$. Let $\delta>0$ be such that
$(2m+\mu F)\delta^2+2\delta\le\bover12\epsilon$.
Now suppose that $u$, $v\in L^0$ are such that
$\bar\rho_F(u,u_0)\le\delta^2$ and $\bar\rho_F(v,v_0)\le\delta^2$. Let
$f$, $g:X\to\Bbb R$ be measurable functions such that $f^{\ssbullet}=u$
and $v^{\ssbullet}=v$. Then
\Centerline{$\mu\{x:x\in F,\,|f(x)-f_0(x)|\ge\delta\}\le\delta$,
\quad$\mu\{x:x\in F,\,|g(x)-g_0(x)|\ge\delta\}\le\delta$,}
\noindent so that
\Centerline{$\mu\{x:x\in F,\,|f(x)-f_0(x)||g(x)-g_0(x)|\ge\delta^2\}
\le 2\delta$}
\noindent and
\Centerline{$\int_F\min(1,|f-f_0|\times|g-g_0|)
\le\delta^2\mu F+2\delta$.}
\noindent Also
\Centerline{$|f\times g-f_0\times g_0|
\le|f-f_0|\times|g-g_0| + |f_0|\times|g-g_0| + |f-f_0|\times|g_0|$,}
\noindent so that
$$\eqalignno{\bar\rho_F(u\times v,u_0\times v_0)
&=\int_F\min(1,|f\times g-f_0\times g_0|)\cr
&\le\Bover12\epsilon+\int_{F_m}\min(1,|f\times g-f_0\times g_0|)\cr
&\le\Bover12\epsilon+\int_{F_m}\min(1,|f-f_0|\times|g-g_0|
+m|g-g_0|+m|f-f_0|)\cr
&\le\Bover12\epsilon+\int_F\min(1,|f-f_0|\times|g-g_0|)\cr
&\qquad\qquad\qquad\qquad+m\int_F\min(1,|g-g_0|)
+m\int_F\min(1,|f-f_0|)\cr
&\le\Bover12\epsilon+\delta^2\mu F+2\delta+2m\delta^2
\le\epsilon.\cr}$$
\noindent As $F$ and $\epsilon$ are arbitrary, $\times$ is continuous at
$(u_0,v_0)$; as $u_0$ and $v_0$ are arbitrary, $\times$ is continuous.
\medskip
{\bf (d)} Take $u\in L^0$, $F\in\Sigma$ of finite measure and
$\epsilon>0$. Then there is a $\delta>0$ such that
$\rho_F(\bar h(v),\bar h(u))\le\epsilon$ whenever $\rho_F(v,u)\le\delta$.
\Prf\Quer\ Otherwise, we can find, for each $n\in\Bbb N$, a $v_n$ such
that $\bar\rho_F(v_n,u)\le 4^{-n}$ but
$\bar\rho_F(\bar h(v_n),\bar h(u))>\epsilon$.
Express $u$ as $f^{\ssbullet}$ and $v_n$ as
$g_n^{\ssbullet}$ where $f$, $g_n:X\to\Bbb R$ are measurable. Set
\Centerline{$E_n=\{x:x\in F,\,|g_n(x)-f(x)|\ge 2^{-n}\}$}
\noindent for each $n$. Then $\bar\rho_F(v_n,u)\ge 2^{-n}\mu E_n$, so
$\mu E_n\le 2^{-n}$ for each $n$, and $E=\bigcap_{n\in\Bbb
N}\bigcup_{m\ge n}E_m$ is negligible. But
$\lim_{n\to\infty}g_n(x)=f(x)$ for every $x\in F\setminus E$, so
(because $h$ is continuous) $\lim_{n\to\infty}h(g_n(x))=h(f(x))$ for
every $x\in F\setminus E$. Consequently (by Lebesgue's Dominated
Convergence Theorem, as always)
\Centerline{$\lim_{n\to\infty}\bar\rho_F(\bar h(v_n),\bar h(u))
=\lim_{n\to\infty}\int_F\min(1,|h(g_n(x))-h(f(x))|\mu(dx)=0$,}
\noindent which is impossible.\ \Bang\Qed
By 2A3H, $\bar h$ is continuous.
}%end of proof of 245D
\cmmnt{\medskip
\noindent{\bf Remark} I cannot say that the topology of convergence
in measure on $\eusm L^0$ is a linear space topology solely because (on
the definitions I have chosen) $\eusm L^0$ is not in general a linear
space.}
\leader{245E}{}\cmmnt{ I turn now to the principal theorem relating
the properties of the topological linear space $L^0(\mu)$ to the
classification of measure spaces in Chapter 21.
\medskip
\noindent}{\bf Theorem} Let $(X,\Sigma,\mu)$ be a measure space. Let
$\frak T$ be the topology of convergence in measure on
$L^0=L^0(\mu)$\cmmnt{, as described in 245A}.
(a) $(X,\Sigma,\mu)$ is semi-finite iff $\frak T$ is Hausdorff.
(b) $(X,\Sigma,\mu)$ is $\sigma$-finite iff $\frak T$ is metrizable.
(c) $(X,\Sigma,\mu)$ is localizable iff $\frak T$ is Hausdorff and
$L^0$ is complete under $\frak T$.
\wheader{245E}{0}{0}{0}{48pt}
\proof{ I use the pseudometrics $\rho_F$ on $\eusm
L^0=\eusm L^0(\mu)$, $\bar\rho_F$ on $L^0$ described in 245A.
\medskip
{\bf (a)(i)} Suppose that $(X,\Sigma,\mu)$ is semi-finite
and that $u$, $v$ are distinct members of $L^0$. Express them as
$f^{\ssbullet}$ and $g^{\ssbullet}$ where $f$ and $g$ are measurable
functions from $X$ to $\Bbb R$. Then $\mu\{x:f(x)\ne g(x)\}>0$ so,
because $(X,\Sigma,\mu)$ is semi-finite, there is a set $F\in\Sigma$ of
finite measure such that $\mu\{x:x\in F,\,f(x)\ne g(x)\}>0$. Now
\Centerline{$\bar\rho_F(u,v)=\int_F\min(|f(x)-g(x)|,1)dx>0$}
\noindent (see 122Rc). As $u$ and $v$ are arbitrary, $\frak T$ is
Hausdorff (2A3L).
\medskip
\quad{\bf (ii)} Suppose that $\frak T$ is Hausdorff and that
$E\in\Sigma$, $\mu E>0$. Then $u=\chi E^{\ssbullet}\ne 0$ so there is
an $F\in\Sigma$ such that $\mu F<\infty$ and $\bar\rho_F(u,0)\ne 0$,
that is, $\mu(E\cap F)>0$.
Now $E\cap F$ is a non-negligible set of finite measure included in $E$.
As $E$ is arbitrary, $(X,\Sigma,\mu)$ is semi-finite.
\medskip
{\bf (b)(i)} Suppose that $(X,\Sigma,\mu)$ is $\sigma$-finite. Let
$\sequencen{E_n}$ be a non-decreasing sequence of sets of finite measure
covering $X$. Set
$$\bar\rho(u,v)
=\sum_{n=0}^{\infty}\bover{\bar\rho_{E_n}(u,v)}{1+2^n\mu
E_n}$$
\noindent for $u$, $v\in L^0$. Then $\bar\rho$ is a metric on $L^0$.
\Prf\ Because every $\bar\rho_{E_n}$ is a pseudometric, so is
$\bar\rho$.
If
$\bar\rho(u,v)=0$, express $u$ as $f^{\ssbullet}$, $v$ as
$g^{\ssbullet}$ where $f$, $g\in\eusm L^0(\mu)$; then
\Centerline{$\int|f-g|\wedge\chi E_n=\bar\rho_{E_n}(u,v)=0$,}
\noindent so $f=g$ almost everywhere in $E_n$, for every $n$.
Because
$X=\bigcup_{n\in\Bbb N}E_n$, $f\eae g$ and $u=v$.\ \Qed\
If $F\in\Sigma$ and $\mu F<\infty$ and $\epsilon>0$, take $n$ such that
$\mu(F\setminus E_n)\le\bover12\epsilon$. If $u$, $v\in L^0$ and
$\bar\rho(u,v)\le\epsilon/2(1+2^n\mu E_n)$, then
$\bar\rho_F(u,v)\le\epsilon$. \Prf\ Express $u$ as $f^{\ssbullet}$,
$v=g^{\ssbullet}$ where $f$, $g\in\eusm L^0$. Then
\Centerline{$\int|u-v|\wedge \chi E_n
=\bar\rho_{E_n}(u,v)\le(1+2^n\mu E_n)\bar\rho(u,v)
\le\Bover{\epsilon}2$,}
\noindent while
\Centerline{$\int|f-g|\wedge \chi(F\setminus E_n)
\le\mu(F\setminus E_n)\le\Bover{\epsilon}2$,}
\noindent so
\Centerline{$\bar\rho_F(u,v)=\int|f-g|\wedge\chi F
\le\int|f-g|\wedge\chi E_n+\int|f-g|\wedge\chi(F\setminus E_n)
\le\Bover{\epsilon}2+\Bover{\epsilon}2
=\epsilon$. \Qed}
In the other direction, given $\epsilon>0$, take $n\in\Bbb N$ such that
$2^{-n}\le\bover12\epsilon$; then $\bar\rho(u,v)\le\epsilon$ whenever
$\bar\rho_{E_n}(u,v)\le\epsilon/2(n+1)$.
These show that $\bar\rho$ defines the same topology as the
$\bar\rho_F$ (2A3Ib), so that $\frak T$, the topology defined by the
$\bar\rho_F$, is
metrizable.
\medskip
\quad{\bf (ii)} Suppose that $\frak T$ is metrizable. Let
$\bar\rho$ be a
metric defining $\frak T$. For each $n\in\Bbb N$ there must be a
measurable set $F_n$ of finite measure and a $\delta_n>0$ such that
\Centerline{$\bar\rho_{F_n}(u,0)\le \delta_n\Longrightarrow\bar\rho(u,0)
\le 2^{-n}$.}
\noindent Set $E=X\setminus\bigcup_{n\in\Bbb N}F_n$. \Quer\ If $E$ is
not negligible, then $u=\chi E^{\ssbullet}\ne 0$; because $\bar\rho$
is a metric, there is an $n\in\Bbb N$ such that $\bar\rho(u,0)>2^{-n}$;
now
\Centerline{$\mu(E\cap F_n)=\bar\rho_{F_n}(u,0)>\delta_n$.}
\noindent But $E\cap F_n=\emptyset$.\ \Bang
So $\mu E=0<\infty$.
Now $X=E\cup\bigcup_{n\in\Bbb N}F_n$ is a countable union of sets of
finite measure, so $\mu$ is $\sigma$-finite.
\medskip
{\bf (c)} By (a), either hypothesis ensures that $\mu$ is semi-finite
and that $\frak T$ is Hausdorff.
\medskip
\quad{\bf (i)} Suppose that $(X,\Sigma,\mu)$ is localizable. Let
$\Cal F$ be a Cauchy filter on $L^0$ (2A5F). For each measurable set
$F$ of finite measure, choose a sequence $\sequencen{A_n(F)}$ of members
of $\Cal F$ such that $\bar\rho_F(u,v)\le 4^{-n}$ for every $u$,
$v\in A_n(F)$ and
every $n$ (2A5G). Choose $u_{Fn}\in\bigcap_{k\le n}A_n(F)$ for each
$n$; then $\bar\rho_F(u_{F,n+1},u_{Fn})\le 2^{-n}$ for each $n$.
Express each
$u_{Fn}$ as $f_{Fn}^{\ssbullet}$ where $f_{Fn}$ is a measurable function
from $X$ to $\Bbb R$. Then
\Centerline{$\mu\{x:x\in F,\,|f_{F,n+1}(x)-f_{Fn}(x)|\ge 2^{-n}\}
\le 2^n\bar\rho_F(u_{F,n+1},u_{Fn})\le 2^{-n}$}
\noindent for each $n$. It follows that $\sequencen{f_{Fn}}$ must
converge almost everywhere in $F$. \Prf\ Set
\Centerline{$H_n=\{x:x\in F,\,|f_{F,n+1}(x)-f_{Fn}(x)|\ge 2^{-n}\}$.}
\noindent Then $\mu H_n\le 2^{-n}$ for each $n$, so
\Centerline{$\mu(\bigcap_{n\in\Bbb N}\bigcup_{m\ge n}H_m)
\le\inf_{n\in\Bbb N}\sum_{m=n}^{\infty}2^{-m}
=0$.}
\noindent If $x\in F\setminus\bigcap_{n\in\Bbb N}\bigcup_{m\ge n}H_m$,
then there is some $k$ such that $x\in F\setminus\bigcup_{m\ge k}H_m$,
so that $|f_{F,m+1}(x)-f_{Fm}(x)|\le 2^{-m}$ for every $m\ge k$, and
$\sequencen{f_{Fn}(x)}$ is Cauchy, therefore convergent.\ \Qed
Set $f_F(x)=\lim_{n\to\infty}f_{Fn}(x)$ for every $x\in F$ such that the
limit is defined in $\Bbb R$, so
that $f_F$ is measurable and defined almost everywhere in $F$.
If $E$, $F$ are two sets of finite measure and $E\subseteq F$, then
$\bar\rho_E(u_{En},u_{Fn})\le 2\cdot 4^{-n}$ for each $n$. \Prf\
$A_n(E)$ and
$A_n(F)$ both belong to $\Cal F$, so must have a point $w$ in common;
now
$$\eqalign{\bar\rho_E(u_{En},u_{Fn})
&\le\bar\rho_E(u_{En},w)+\bar\rho_E(w,u_{Fn})\cr
&\le\bar\rho_E(u_{En},w)+\bar\rho_F(w,u_{Fn})
\le 4^{-n}+4^{-n}. \text{ \Qed}\cr}$$
\noindent Consequently
\Centerline{$\mu\{x:x\in E,\,|f_{Fn}(x)-f_{En}(x)|\ge 2^{-n}\}
\le 2^n\bar\rho_E(u_{Fn},u_{En})\le 2^{-n+1}$}
\noindent for each $n$, and $\lim_{n\to\infty}f_{Fn}-f_{En}=0$ almost
everywhere in $E$; so that $f_E=f_F$ a.e.\ on $E$.
Consequently, if $E$ and $F$ are any two sets of finite measure,
$f_E=f_F$ a.e.\ on $E\cap F$, because both are equal almost everywhere
on $E\cap F$ to $f_{E\cup F}$.
Because $\mu$ is localizable, it follows that there is an
$f\in\eusm L^0$ such that $f=f_E$ a.e.\ on $E$
for every measurable set $E$ of finite measure (213N). Consider
$u=f^{\ssbullet}\in L^0$. For any set $E$ of finite measure,
\Centerline{$\bar\rho_E(u,u_{En})
=\int_E\min(1,|f(x)-f_{En}(x)|)dx
=\int_E\min(1,|f_E(x)-f_{En}(x)|)dx\to 0$}
\noindent as $n\to\infty$, using Lebesgue's Dominated Convergence
Theorem. Now
$$\eqalign{\inf_{A\in\Cal F}\sup_{v\in A}\bar\rho_E(v,u)
&\le\inf_{n\in\Bbb N}\sup_{v\in A_{En}}\bar\rho_E(v,u)\cr
&\le\inf_{n\in\Bbb N}\sup_{v\in A_{En}}
(\bar\rho_E(v,u_{En})+\bar\rho_E(u,u_{En}))\cr
&\le\inf_{n\in\Bbb N}(4^{-n}+\bar\rho_E(u,u_{En}))
=0.\cr}$$
\noindent As $E$ is arbitrary, $\Cal F\to u$. As $\Cal F$ is
arbitrary, $L^0$ is complete under $\frak T$.
\medskip
\quad{\bf (ii)} Now suppose that $L^0$ is complete under $\frak T$ and
let $\Cal E$ be any family of sets in $\Sigma$. Let $\Cal E'$ be
\Centerline{$\{\bigcup\Cal E_0:\Cal E_0$ is a finite subset of
$\Cal E\}$.}
\noindent Then the union of any two members of $\Cal E'$ belongs to
$\Cal E'$. Let $\Cal F$ be the set
\Centerline{$\{A:A\subseteq L^0$, $A\supseteq A_E$ for
some $E\in\Cal E'\}$,}
\noindent where for $E\in\Cal E'$ I write
\Centerline{$A_E=\{\chi F^{\ssbullet}:F\in\Cal E'$, $F\supseteq E\}$.}
\noindent Then $\Cal F$ is a filter on $L^0$, because $A_E\cap
A_F=A_{E\cup F}$ for all $E$, $F\in\Cal E'$.
In fact $\Cal F$ is a Cauchy filter. \Prf\ Let $H$ be any set of
finite measure and $\epsilon>0$. Set $\gamma=\sup_{E\in\Cal
E'}\mu(H\cap E)$ and take $E\in\Cal E'$ such that $\mu(H\cap E)\ge
\gamma-\epsilon$. Consider $A_E\in \Cal F$. If $F$, $G\in\Cal E'$
and $F\supseteq E$, $G\supseteq E$ then
$$\eqalign{\bar\rho_H(\chi F^{\ssbullet},\chi G^{\ssbullet})
&=\mu(H\cap(F\symmdiff G))
=\mu(H\cap(F\cup G))-\mu(H\cap F\cap G)\cr
&\le\gamma-\mu(H\cap E)
\le\epsilon.\cr}$$
\noindent Thus $\bar\rho_H(u,v)\le\epsilon$ for all $u$, $v\in A_E$.
As $H$ and $\epsilon$ are arbitrary, $\Cal F$ is Cauchy.\ \Qed
Because $L^0$ is complete under $\frak T$, $\Cal F$ has a limit $w$ say.
Express $w$ as $h^{\ssbullet}$, where $h:X\to\Bbb R$ is measurable, and
consider $G=\{x:h(x)>\bover12\}$.
\vthsp\Quer\ If $E\in \Cal E$ and $\mu(E\setminus G)>0$, let
$F\subseteq E\setminus G$ be a set of non-zero finite measure. Then
$\{u:\bar\rho_F(u,w)<\bover12\mu F\}$ belongs to $\Cal F$, so meets
$A_E$; let $H\in\Cal E'$ be such that $E\subseteq H$ and
$\bar\rho_F(\chi H^{\ssbullet},w)<\bover12\mu F$. Then
\Centerline{$\int_F\min(1,|1-h(x)|)
=\bar\rho_F(\chi H^{\ssbullet},w)<\Bover12\mu F$;}
\noindent but because $F\cap G=\emptyset$, $1-h(x)\ge\bover12$ for every
$x\in F$, so this is impossible.\ \Bang
Thus $E\setminus G$ is negligible for every $E\in\Cal E$.
Now suppose that $H\in\Sigma$ and $\mu(G\setminus H)>0$. Then there is
an $E\in\Cal E$ such that $\mu(E\setminus H)>0$. \Prf\ Let
$F\subseteq G\setminus H$ be a set of non-zero finite measure. Let
$u\in A_{\emptyset}$ be such that $\bar\rho_F(u,w)<\bover12\mu F$.
Then $u$ is of the form $\chi C^{\ssbullet}$ for some $C\in\Cal E'$, and
\Centerline{$\int_F\min(1,|\chi C(x) - h(x)|)<\Bover12\mu F$.}
\noindent As $h(x)\ge\bover12$ for every $x\in F$, $\mu(C\cap F)>0$.
But $C$ is a finite union of members of $\Cal E$, so there is an
$E\in\Cal E$ such that $\mu(E\cap F)>0$, and now $\mu(E\setminus
H)>0$.\ \Qed
As $H$ is arbitrary, $G$ is an essential supremum of $\Cal E$ in
$\Sigma$. As $\Cal E$ is arbitrary, $(X,\Sigma,\mu)$ is localizable.
}%end of proof of 245E
\leader{245F}{Alternative description of the topology of convergence in
measure} Let us return to arbitrary measure spaces $(X,\Sigma,\mu)$.
\header{245Fa}{\bf (a)} For any $F\in\Sigma$ of finite measure and
$\epsilon>0$ define $\tau_{F\epsilon}:\eusm L^0\to\coint{0,\infty}$ by
\Centerline{$\tau_{F\epsilon}(f)
=\mu^*\{x:x\in F\cap\dom f,\,|f(x)|>\epsilon\}$}
\noindent for $f\in\eusm L^0$\cmmnt{, taking $\mu^*$ to be the outer
measure defined from $\mu$ (132B)}. If $f$, $g\in\eusm L^0$ and
$f\eae g$, then\cmmnt{
\Centerline{$\{x:x\in F\cap\dom f,\,|f(x)|>\epsilon\}
\symmdiff\{x:x\in F\cap\dom g,\,|g(x)|>\epsilon\}$}
\noindent is negligible, so} $\tau_{F\epsilon}(f)=\tau_{F\epsilon}(g)$;
accordingly we have a functional from $L^0$ to $\coint{0,\infty}$, given
by
\Centerline{$\bar\tau_{F\epsilon}(u)=\tau_{F\epsilon}(f)$}
\noindent whenever $f\in\eusm L^0$ and $u=f^{\ssbullet}\in L^0$.
\header{245Fb}{\bf (b)} \cmmnt{Now $\tau_{F\epsilon}$ is not (except
in trivial
cases) subadditive, so does not define a pseudometric on $\eusm L^0$ or
$L^0$. But we can say that, for $f\in\eusm L^0$,
\Centerline{$\tau_F(f)\le\epsilon\min(1,\epsilon)
\Longrightarrow\tau_{F\epsilon}(f)\le\epsilon
\Longrightarrow\tau_F(f)\le\epsilon(1+\mu F)$.}
\noindent\prooflet{(The point is that if $E\subseteq\dom f$ is a
measurable
conegligible set such that $f\restr E$ is measurable, then
\Centerline{$\tau_F(f)=\int_{E\cap F}\min(f(x),1)dx$,
\quad$\tau_{F\epsilon}(f)=\mu\{x:x\in E\cap F,\,f(x)>\epsilon\}$.)}
}
This means that a set $G\subseteq\eusm L^0$ is open for the
topology of convergence in measure iff for every $f\in G$ we can find a
set $F$ of finite measure and $\epsilon$, $\delta>0$ such that
\Centerline{$\tau_{F\epsilon}(g-f)\le\delta\Longrightarrow g\in G$.}
\noindent Of course $\tau_{F\delta}(f)\ge\tau_{F\epsilon}(f)$
whenever $\delta\le\epsilon$, so we can equally say: }%end of comment
$G\subseteq\eusm L^0$ is open for the
topology of convergence in measure iff for every $f\in G$ we can find a
set $F$ of finite measure and $\epsilon>0$ such that
\Centerline{$\tau_{F\epsilon}(g-f)\le\epsilon\Longrightarrow g\in G$.}
\noindent\cmmnt{Similarly, }$G\subseteq L^0$ is open for the
topology of convergence in measure on $L^0$ iff for every $u\in G$ we
can find a set $F$ of finite measure and $\epsilon>0$ such that
\Centerline{$\bar\tau_{F\epsilon}(v-u)\le\epsilon
\Longrightarrow v\in G$.}
\header{245Fc}{\bf (c)} It follows at once that
a sequence $\sequencen{f_n}$ in $\eusm L^0=\eusm L^0(\mu)$
converges in measure to $f\in\eusm L^0$ iff
\Centerline{$\lim_{n\to\infty}
\mu^*\{x:x\in F\cap\dom f\cap\dom f_n,\,|f_n(x)-f(x)|>\epsilon\}
=0$}
\noindent whenever $F\in\Sigma$, $\mu F<\infty$ and $\epsilon>0$.
Similarly, a sequence $\sequencen{u_n}$ in $L^0$ converges in measure to
$u$ iff
$\lim_{n\to\infty}\bar\tau_{F\epsilon}(u-u_n)=0$ whenever $\mu
F<\infty$ and $\epsilon>0$.
\header{245Fd}{\bf (d)} In particular, if $(X,\Sigma,\mu)$ is totally
finite, $\sequencen{f_n}\to f$ in $\eusm L^0$ iff
\Centerline{$\lim_{n\to\infty}
\mu^*\{x:x\in \dom f\cap\dom f_n,\,|f(x)-f_n(x)|>\epsilon\}
=0$}
\noindent for every $\epsilon>0$, and $\sequencen{u_n}\to u$ in $L^0$
iff
\Centerline{$\lim_{n\to\infty}\bar\tau_{X\epsilon}(u-u_n)=0$}
\noindent for every $\epsilon>0$.
\leader{245G}{Embedding $L^p$ in $L^0$: Proposition} Let
$(X,\Sigma,\mu)$ be any measure space. Then for any $p\in[1,\infty]$,
the embedding of $L^p=L^p(\mu)$ in $L^0=L^0(\mu)$ is continuous for the
norm topology of $L^p$ and the topology of convergence in measure on
$L^0$.
\proof{ Suppose that $u$, $v\in L^p$ and that $\mu F<\infty$. Then
$(\chi F)^{\ssbullet}$ belongs to $L^q$, where $q=p/(p-1)$ (taking $q=1$
if $p=\infty$, $q=\infty$ if $p=1$ as usual), and
\Centerline{$\bar\rho_F(u,v)\le\int|u-v|\times(\chi F)^{\ssbullet}
\le\|u-v\|_p\|\chi F^{\ssbullet}\|_q$}
\noindent (244Eb). By 2A3H, this is enough to ensure that the
embedding $L^p\embedsinto L^0$ is continuous.
}%end of proof of 245G
\leader{245H}{}\cmmnt{ The case of $L^1$ is so important that I go
farther with it.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a measure space.
(a)(i) If $f\in\eusm L^1=\eusm L^1(\mu)$ and $\epsilon>0$, there are a
$\delta>0$ and a set $F\in\Sigma$ of finite measure such that
$\int|f-g|\le\epsilon$ whenever $g\in\eusm L^1$,
$\int|g|\le\int|f|+\delta$ and $\rho_F(f,g)\le\delta$.
\quad(ii) For any sequence $\sequencen{f_n}$ in $\eusm L^1$ and any
$f\in\eusm L^1$, $\lim_{n\to\infty}\int|f-f_n|=0$ iff
$\sequencen{f_n}\to f$ in measure and
$\limsup_{n\to\infty}\int|f_n|\le\int|f|$.
(b)(i) If $u\in L^1=L^1(\mu)$ and $\epsilon>0$, there are a $\delta>0$
and a set $F\in\Sigma$ of finite measure such that
$\|u-v\|_1\le\epsilon$ whenever $v\in L^1$, $\|v\|_1\le\|u\|_1+\delta$
and $\bar\rho_F(u,v)\le\delta$.
\quad(ii) For any sequence $\sequencen{u_n}$ in $L^1$ and any $u\in
L^1$, $\sequencen{u_n}\to u$ for $\|\,\|_1$ iff $\sequencen{u_n}\to u$
in measure and $\limsup_{n\to\infty}\|u_n\|_1\le\|u\|_1$.
\proof{{\bf (a)(i)}
We know that there are a set $F$ of finite measure and an $\eta>0$ such
that $\int_E|f|\le\bover15\epsilon$ whenever $\mu(E\cap F)\le\eta$
(225A). Take $\delta>0$ such that $\delta(\epsilon+5\mu
F)\le\epsilon\eta$ and $\delta\le\bover15\epsilon$.
Then if $\int|g|\le\int|f|+\delta$ and $\rho_F(f,g)\le\delta$, let
$G\subseteq\dom f\cap\dom g$ be a conegligible measurable set such that
$f\restr G$ and $g\restr G$ are both measurable. Set
\Centerline{$E=\{x:x\in F\cap G,\,
|f(x)-g(x)|\ge\Bover{\epsilon}{\epsilon+5\mu F}\}$;}
\noindent then
\Centerline{$\delta\ge\rho_F(f,g)
\ge\Bover{\epsilon}{\epsilon+5\mu F}\mu E$,}
\noindent so $\mu E\le\eta$. Set $H=F\setminus E$, so that
$\mu(F\setminus H)\le\eta$ and $\int_{X\setminus
H}|f|\le\bover15{\epsilon}$. On the other hand, for almost every $x\in
H$, $|f(x)-g(x)|\le\bover{\epsilon}{\epsilon+5\mu F}$, so
$\int_H|f-g|\le\bover15\epsilon$ and
\Centerline{$\int_{H}|g|\ge\int_{H}|f|-\Bover15\epsilon
\ge\int|f|-\int_{X\setminus H}|f|-\Bover15\epsilon
\ge\int|f|-\Bover25\epsilon$.}
\noindent Since $\int|g|\le\int|f|+\bover15\epsilon$, $\int_{X\setminus
H}|g|\le\bover35{\epsilon}$. Now this means that
\Centerline{$\int|g-f|
\le\int_{X\setminus H}|g|+\int_{X\setminus H}|f|+\int_H|g-f|
\le\Bover35\epsilon+\Bover15\epsilon+\Bover15\epsilon
=\epsilon$,}
\noindent as required.
\medskip
\quad{\bf (ii)} If
$\lim_{n\to\infty}\int|f-f_n|=0$, that is,
$\lim_{n\to\infty}f_n^{\ssbullet}=f^{\ssbullet}$ in $L^1$, then by 245G
we must have $\sequencen{f_n^{\ssbullet}}\to f^{\ssbullet}$ in $L^0$,
that is, $\sequencen{f_n}\to f$ for the topology of convergence in
measure. Also, of course, $\lim_{n\to\infty}\int|f_n|=\int|f|$.
In the other direction, if $\limsup_{n\to\infty}\int|f_n|\le\int|f|$ and
$\sequencen{f_n}\to f$ for the topology of convergence in measure, then
whenever $\delta>0$ and $\mu F<\infty$ there must be an $m\in\Bbb N$
such that $\int|f_n|\le\int|f|+\delta$, $\rho_F(f,f_n)\le\delta$ for
every $n\ge m$; so (i) tells us that $\lim_{n\to\infty}\int|f_n-f|=0$.
\medskip
{\bf (b)} This now follows immediately if we express $u$ as
$f^{\ssbullet}$, $v$ as $g^{\ssbullet}$ and $u_n$ as $f_n^{\ssbullet}$.
}%end of proof of 245H
\cmmnt{
\vleader{48pt}{245I}{Remarks (a)} I think the phenomenon here is so important
that it is worth looking at some elementary examples.
(i) If $\mu$ is
counting measure on $\Bbb N$, and we set $f_n(n)=1$, $f_n(i)=0$ for
$i\ne n$, then $\sequencen{f_n}\to 0$ in measure, while $\int|f_n|=1$
for every $n$.
(ii) If $\mu$ is Lebesgue measure on $[0,1]$, and we
set $f_n(x)=2^n$ for $0<x\le 2^{-n}$, $0$ for other $x$, then again
$\sequencen{f_n}\to 0$ in measure, while $\int|f_n|=1$ for every $n$.
(iii) In 245Cc we have another sequence $\sequencen{f_n}$ converging to
$0$ in measure, while $\int|f_n|=1$ for every $n$. In all these cases
(as required by Fatou's Lemma, at least in (i) and (ii)) we have
$\int|f|\le\liminf_{n\to\infty}\int|f_n|$. (The next proposition shows
that this applies to any sequence which is convergent in measure.)
The common feature of these examples is the way in which somehow the
$f_n$ escape to infinity, either laterally (in (i)) or vertically (in
(iii)) or both (in (ii)). Note that in all three examples we can set
$f'_n=2^nf_n$ to obtain a sequence still converging to $0$ in measure,
but with $\lim_{n\to\infty}\int|f'_n|=\infty$.
\spheader 245Ib In 245H, I have used the explicit formulations
`$\lim_{n\to\infty}\int|f_n-f|=0$' (for sequences of functions),
`$\sequencen{u_n}\to u$ for $\|\,\|_1$' (for sequences in $L^1$).
These are often expressed by saying that $\sequencen{f_n}$,
$\sequencen{u_n}$ are {\bf convergent in mean} to $f$, $u$ respectively.
}%end of comment
\leader{245J}{}\cmmnt{ For semi-finite spaces we have a further
relationship.
\medskip
\noindent}{\bf Proposition} Let $(X,\Sigma,\mu)$ be a semi-finite
measure space. Write $\eusm L^0=\eusm L^0(\mu)$, etc.
(a)(i) For any $a\ge 0$, the set $\{f:f\in\eusm L^1,\,\int|f|\le a\}$ is
closed in $\eusm L^0$ for the topology of convergence in measure.
\quad(ii) If $\sequencen{f_n}$ is a sequence in $\eusm L^1$ which is
convergent in measure to $f\in\eusm L^0$, and
$\liminf_{n\to\infty}\int|f_n|<\infty$, then $f$ is integrable and
$\int|f|\le\liminf_{n\to\infty}\int|f_n|$.
(b)(i) For any $a\ge 0$, the set $\{u:u\in L^1,\,\|u\|_1\le a\}$ is
closed in $L^0$ for the topology of convergence in measure.
\quad(ii) If $\sequencen{u_n}$ is a sequence in $L^1$ which is
convergent in measure to $u\in L^0$, and
$\liminf_{n\to\infty}\|u_n\|_1<\infty$, then $u\in L^1$ and
$\|u\|_1\le\liminf_{n\to\infty}\|u_n\|_1$.
\proof{{\bf (a)(i)} Set $A=\{f:f\in\eusm L^1,\,\int|f|\le a\}$, and let
$g$ be any member of the closure of $A$ in $\eusm L^0$. Let $h$ be any
simple function such that $0\le h\leae|g|$, and $\epsilon>0$. If
$h=0$ then of course $\int h\le a$. Otherwise, setting
$F=\{x:h(x)>0\}$ and $M=\sup_{x\in X}h(x)$, there is an $f\in A$ such that
$\mu^*\{x:x\in F\cap\dom f\cap\dom g,\,
|f(x)-g(x)|\ge\epsilon\}\le\epsilon$ (245F); let
$E\supseteq\{x:x\in F\cap\dom f\cap\dom g,\,|f(x)-g(x)|\ge\epsilon\}$
be a measurable set of measure
at most $\epsilon$. Then $h\leae|f|+\epsilon\chi F+M\chi E$, so
$\int h\le a+\epsilon(M+\mu F)$. As $\epsilon$ is arbitrary,
$\int h\le a$. But we are supposing that $\mu$ is semi-finite, so
this is enough to ensure that $g$ is integrable and that $\int|g|\le a$
(213B), that is, that $g\in A$. As $g$ is arbitrary, $A$ is closed.
\medskip
\quad{\bf (ii)}
Now if $\sequencen{f_n}$ is convergent in measure to $f$, and
$\liminf_{n\to\infty}\int|f_n|=a$, then for any $\epsilon>0$ there is a
subsequence $\sequence{k}{f_{n(k)}}$ such that $\int|f_{n(k)}|\le
a+\epsilon$ for every $k$; since $\sequence{k}{f_{n(k)}}$ still
converges in measure to $f$, $\int|f|\le a+\epsilon$. As $\epsilon$ is
arbitrary, $\int|f|\le a$.
\medskip
{\bf (b)} As in 245H, this is just a translation of part (a) into the
language of $L^1$ and $L^0$.
}%end of proof of 245J
\leader{245K}{}\cmmnt{ For $\sigma$-finite measure spaces, the
topology of
convergence in measure on $L^0$ is metrizable, so can be described
effectively in terms of convergent sequences; it is therefore important
that we have, in this case, a sharp characterisation of sequential
convergence in measure.
\medskip
\noindent}{\bf Proposition}
Let $(X,\Sigma,\mu)$ be a $\sigma$-finite measure space. Then
(a) a sequence $\sequencen{f_n}$ in $\eusm L^0$ converges in measure to
$f\in\eusm L^0$ iff every subsequence
of $\sequencen{f_n}$ has a sub-subsequence converging to $f$ almost
everywhere;
(b) a sequence $\sequencen{u_n}$ in $L^0$ converges in measure to $u\in
L^0$ iff every subsequence
of $\sequencen{u_n}$ has a sub-subsequence which order*-converges to $u$.
\proof{{\bf (a)(i)} Suppose that
$\sequencen{f_n}\to f$, that is, that
$\lim_{n\to\infty}\int|f-f_n|\wedge \chi F=0$ for every set $F$ of
finite measure. Let $\sequencen{E_k}$ be a non-decreasing sequence of
sets
of finite measure covering $X$, and let
$\sequence{k}{n(k)}$ be a strictly increasing sequence in $\Bbb N$ such
that $\int|f-f_{n(k)}|\wedge\chi E_k\le 4^{-k}$ for every
$k\in\Bbb N$. Then
$\sum_{k=0}^{\infty}|f-f_{n(k)}|\wedge\chi E_k$ is finite almost everywhere
(242E); but $\lim_{k\to\infty}f_{n(k)}(x)=f(x)$ whenever
$\sum_{k=0}^{\infty}\min(1,|f(x)-f_{n(k)}(x)|)<\infty$, so
$\sequence{k}{f_{n(k)}}\to f$ a.e.
\medskip
\quad{\bf (ii)} The same applies to every
subsequence of $\sequencen{f_n}$, so that every subsequence of
$\sequencen{f_n}$ has a sub-subsequence converging to $f$ almost
everywhere.
\medskip
\quad{\bf (iii)} Now suppose that $\sequencen{f_n}$ does
not converge to $f$. Then there is an open set $U$ containing $f$ such
that $\{n:f_n\notin U\}$ is infinite, that is, $\sequencen{f_n}$ has a
subsequence $\sequencen{f'_n}$ with $f'_n\notin U$ for every $n$. But
now no sub-subsequence of $\sequencen{f'_n}$ converges to $f$ in
measure, so no such sub-subsequence can converge almost everywhere, by
245Ca.
\medskip
{\bf (b)} This follows immediately from (a) if we express $u$ as
$f^{\ssbullet}$, $u_n$ as $f_n^{\ssbullet}$.
}%end of proof of 245K
\leader{245L}{Corollary} Let $(X,\Sigma,\mu)$ be a $\sigma$-finite
measure space.
(a) A subset $A$ of $\eusm L^0=\eusm L^0(\mu)$ is closed for the
topology of convergence in measure iff $f\in A$ whenever $f\in\eusm L^0$
and there is a sequence $\sequencen{f_n}$ in $A$ such that
$f\eae\lim_{n\to\infty}f_n$.
(b) A subset $A$ of $L^0=L^0(\mu)$ is closed for the topology of
convergence in measure iff $u\in A$ whenever $u\in L^0$ and there is a
sequence $\sequencen{u_n}$ in $A$ order*-converging to $u$.
\proof{{\bf (a)(i)} If $A$ is closed for the topology of convergence in
measure, and $\sequencen{f_n}$ is a sequence in $A$ converging to $f$
almost everywhere, then $\sequencen{f_n}$ converges to $f$ in measure,
so surely $f\in A$ (since otherwise all but finitely many of the $f_n$
would have to belong to the open set $\eusm L^0\setminus A$).
\medskip
\quad{\bf (ii)} If $A$ is not closed, there is an
$f\in\overline{A}\setminus A$. The topology can be defined by a metric
$\rho$ (245Eb), and we can choose a sequence $\sequencen{f_n}$ in $A$
such that $\rho(f_n,f)\le 2^{-n}$ for every $n$, so that
$\sequencen{f_n}\to f$ in measure. By 245K, $\sequencen{f_n}$ has a
subsequence $\sequencen{f'_n}$ converging a.e.\ to $f$, and this
witnesses that $A$ fails to satisfy the condition.
\medskip
{\bf (b)} This follows immediately, because $A\subseteq L^0$ is closed
iff $\{f:f^{\ssbullet}\in A\}$ is closed in $\eusm L^0$.
}%end of proof of 245L
\leader{245M}{Complex $L^0$} In 241J I briefly discussed the
adaptations needed to construct the complex linear space $L^0_{\Bbb C}$.
The formulae of 245A may be used unchanged to
define topologies of convergence in measure on $\eusm L^0_{\Bbb C}$ and
$L^0_{\Bbb C}$. I think that every word of 245B-245L still applies
if we replace each $L^0$ or $\eusm L^0$ with $L^0_{\Bbb C}$ or $\eusm
L^0_{\Bbb C}$. \cmmnt{Alternatively, to relate the `real' and
`complex' forms of 245E, for instance, we can observe that because