forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt247.tex
505 lines (398 loc) · 20.1 KB
/
mt247.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
\frfilename{mt247.tex}
\versiondate{26.8.13}
\copyrightdate{1995}
\def\chaptername{Function spaces}
\def\sectionname{Weak compactness in $L^1$}
\newsection{247}
I now come to the most striking feature of uniform integrability: it
provides a description of the relatively weakly compact subsets of
$L^1$ (247C). I have put this into a separate section because it
demands some knowledge of functional analysis -- in
particular, of course, of weak topologies on Banach spaces.
I will try to give an account in terms which are accessible to
novices in the theory of normed spaces because the result is
essentially measure-theoretic, as
well as being of vital importance to applications in probability theory.
I have written out the essential definitions in
\S\S2A3-2A5. %2A3 2A4 2A5
\leader{247A}{}\cmmnt{ Part of the argument of the main theorem below
will run more smoothly if I separate out an idea which is, in effect, a
simple special case of a theme which has been running through the
exercises of this chapter (241Yg, 242Yb, 243Ya, 244Yd).
\medskip
\noindent}{\bf Lemma} Let $(X,\Sigma,\mu)$ be a measure space, and $G$
any member of $\Sigma$. Let $\mu_G$ be the subspace measure on
$G$\cmmnt{, so
that $\mu_GE=\mu E$ when $E\subseteq G$ and $E\in\Sigma$}. Set
\Centerline{$U=\{u:u\in L^1(\mu),\,u\times\chi G^{\ssbullet}=u\}
\subseteq L^1(\mu)$.}
\noindent Then we have
an isomorphism $S$ between the ordered normed spaces $U$ and
$L^1(\mu_G)$, given by writing
\Centerline{$S(f^{\ssbullet})=(f\restr G)^{\ssbullet}$}
\noindent for every $f\in\eusm L^1(\mu)$ such that $f^{\ssbullet}\in
U$.
\proof{ Of course I should remark explicitly that $U$ is a linear
subspace of $L^1(\mu)$. I have discussed integration over subspaces in
\S\S131 and 214; in particular, I noted that $f\restr G$ is integrable,
and that
\Centerline{$\int|f\restr G|d\mu_G
=\int|f|\times\chi G\,d\mu\le\int|f|d\mu$}
\noindent for every $f\in\eusm L^1(\mu)$ (131Fa). If $f$,
$g\in\eusm L^1(\mu)$ and
$f=g\,\,\mu$-a.e., then $f\restr G=g\restr G\,\,\mu_G$-a.e.; so the
proposed formula for $S$ does indeed define a map from $U$ to
$L^1(\mu_G)$.
Because
\Centerline{$(f+g)\restr G=(f\restr G)+(g\restr G)$,
\quad$(cf)\restr G=c(f\restr G)$}
\noindent for all $f$, $g\in\eusm L^1(\mu)$ and all $c\in\Bbb R$, $S$ is
linear. Because
\Centerline{$f\le g\,\,\mu$-a.e.$\,\Longrightarrow\,
f\restr G\le g\restr G\,\,\mu_G$-a.e.,}
\noindent $S$ is order-preserving. Because $\int|f\restr
G|d\mu_G\le\int|f|d\mu$ for every $f\in\eusm L^1(\mu)$,
$\|Su\|_1\le\|u\|_1$ for every $u\in U$.
To see that $S$ is surjective, take any $v\in L^1(\mu_G)$. Express $v$
as $g^{\ssbullet}$ where $g\in\eusm L^1(\mu_G)$. By 131E,
$f\in\eusm L^1(\mu)$, where $f(x)=g(x)$ for $x\in\dom g$, $0$ for
$x\in X\setminus G$; so that $f^{\ssbullet}\in U$ and
$f\restr G=g$ and $v=S(f^{\ssbullet})\in S[U]$.
To see that $S$ is norm-preserving, note that,
for any $f\in\eusm L^1(\mu)$,
\Centerline{$\int|f\restr G|d\mu_G
=\int |f|\times\chi G\,d\mu$,}
\noindent so that if $u=f^{\ssbullet}\in U$ we shall have
\Centerline{$\|Su\|_1
=\int|f\restr G|d\mu_G
=\int|f|\times\chi G\,d\mu
=\|u\times\chi G^{\ssbullet}\|_1
=\|u\|_1$.}
}
\leader{247B}{Corollary} Let $(X,\Sigma,\mu)$ be any measure space, and
let $G\in\Sigma$ be a measurable set expressible as a countable union
of sets of finite measure. Define $U$ as in 247A, and let
$h:L^1(\mu)\to\Bbb R$ be any continuous linear functional. Then there
is a $v\in L^{\infty}(\mu)$ such that $h(u)=\int u\times v\,d\mu$ for
every $u\in U$.
\proof{ Let $S:U\to L^1(\mu_G)$ be the isomorphism described in 247A.
Then $S^{-1}:L^1(\mu_G)\to U$ is linear and continuous, so
$h_1=hS^{-1}$ belongs to the normed space dual $(L^1(\mu_G))^*$ of
$L^1(\mu_G)$. Now of course $\mu_G$ is $\sigma$-finite, therefore
localizable (211L), so 243Gb tells us that there is a
$v_1\in L^{\infty}(\mu_G)$ such that
\Centerline{$h_1(u)=\int u\times v_1d\mu_G$}
\noindent for every $u\in L^1(\mu_G)$.
Express $v_1$ as $g_1^{\ssbullet}$ where $g_1:G\to\Bbb R$ is a
bounded measurable function. Set $g(x)=g_1(x)$ for $x\in G$, $0$ for
$x\in X\setminus G$; then $g:X\to\Bbb R$ is a bounded measurable
function, and $v=g^{\ssbullet}\in L^{\infty}(\mu)$. If $u\in U$,
express $u$ as $f^{\ssbullet}$ where $f\in\eusm L^1(\mu)$; then
$$\eqalignno{h(u)
&=h(S^{-1}Su)
=h_1((f\restr G)^{\ssbullet})
=\int(f\restr G)\times g_1d\mu_G\cr
&=\int(f\times g)\restr G\,d\mu_G
=\int f\times g\times\chi G\,d\mu
=\int f\times g\,d\mu
=\int u\times v.\cr}$$
\noindent As $u$ is arbitrary, this proves the result.
}
\leader{247C}{Theorem} Let $(X,\Sigma,\mu)$ be any measure space and $A$
a subset of $L^1={L}^1(\mu)$. Then $A$ is uniformly integrable iff it
is relatively compact in $L^1$ for the weak topology of $L^1$.
\proof{{\bf (a)} Suppose that $A$ is relatively
compact for the weak topology. I seek to show that it satisfies the
condition (iii) of 246G.
\medskip
\quad{\bf (i)} If $F\in\Sigma$, then surely
$\sup_{u\in A}|\int_Fu|<\infty$, because $u\mapsto\int_Fu$ belongs to
$(L^1)^*$,
and if $h\in (L^1)^*$ then the image of any relatively weakly compact
set under $h$ must be bounded (2A5Ie).
\medskip
\quad{\bf (ii)} Now suppose that
$\sequencen{F_n}$ is a disjoint sequence in $\Sigma$. \Quer\ Suppose,
if possible, that
\discrcenter{468pt}{$\sequencen{\sup_{u\in A}|\int_{F_n}u|}$ }does not converge to $0$.
Then there is a strictly increasing sequence
$\sequence{k}{n(k)}$ in $\Bbb N$ such that
\Centerline{$\gamma
=\Bover12\inf_{k\in\Bbb N}\sup_{u\in A}|\int_{F_{n(k)}}u|>0$.}
\noindent For each $k$, choose $u_k\in A$ such that
$|\int_{F_{n(k)}}u_k|\ge\gamma$. Because $A$ is
relatively compact for the weak topology, there is a cluster point $u$
of $\sequence{k}{u_{k}}$ in $L^1$ for the weak topology (2A3Ob).
Set $\eta_j=2^{-j}\gamma/6>0$ for each $j\in\Bbb N$.
We can now choose a strictly increasing sequence $\sequence{j}{k(j)}$
inductively so that, for each $j$,
\Centerline{$\int_{F_{n(k(j))}}(|u|+\sum_{i=0}^{j-1}|u_{k(i)}|)
\le\eta_j$}
\Centerline{$\sum_{i=0}^{j-1}
|\int_{F_{n(k(i))}}u-\int_{F_{n(k(i))}}u_{k(j)}|\le\eta_j$}
\noindent for every $j$, interpreting $\sum_{i=0}^{-1}$ as $0$. \Prf\
Given $\langle k(i)\rangle_{i<j}$, set $v^*=|u|
+\sum_{i=0}^{j-1}|u_{k(i)}|$; then
$\lim_{k\to\infty}\int_{F_{n(k)}}v^*=0$, by Lebesgue's Dominated
Convergence Theorem or otherwise, so there is a $k^*$ such that
$k^*>k(i)$ for every $i<j$ and $\int_{F_{n(k)}}v^*\le\eta_j$ for every
$k\ge k^*$. Next,
\Centerline{$w\mapsto\sum_{i=0}^{j-1}
|\int_{F_{n(k(i))}}u-\int_{F_{n(k(i))}}w|:L^1\to\Bbb R$}
\noindent is continuous for the weak topology of $L^1$ and zero at $u$,
and $u$ belongs
to every weakly open set containing $\{u_{k}:k\ge k^*\}$, so there is a
$k(j)\ge k^*$ such that
$\sum_{i=0}^{j-1}
|\int_{F_{n(k(i))}}u-\int_{F_{n(k(i))}}u_{k(j)}|<\eta_j$, which
continues the construction. \Qed
Let $v$ be any cluster point in $L^1$, for the weak topology, of
$\sequence{j}{u_{k(j)}}$. Setting $G_i=F_{n(k(i))}$, we have
$|\int_{G_i}u-\int_{G_i}u_{k(j)}|\le\eta_j$ whenever $i<j$, so
$\lim_{j\to\infty}\int_{G_i}u_{k(j)}$ exists $=\int_{G_i}u$ for each
$i$, and $\int_{G_i}v=\int_{G_i}u$ for every $i$; setting
$G=\bigcup_{i\in\Bbb N}G_i$,
\Centerline{$\int_Gv=\sum_{i=0}^{\infty}\int_{G_i}v
=\sum_{i=0}^{\infty}\int_{G_i}u=\int_Gu$,}
\noindent by 232D, because $\sequence{i}{G_i}$ is disjoint.
For each $j\in\Bbb N$,
$$\eqalignno{\sum_{i=0}^{j-1}|\int_{G_i}u_{k(j)}|
&+\sum_{i=j+1}^{\infty}|\int_{G_i}u_{k(j)}|\cr
&\le\sum_{i=0}^{j-1}\int_{G_i}|u|
+\sum_{i=0}^{j-1}|\int_{G_i}u-\int_{G_i}u_{k(j)}|
+\sum_{i=j+1}^{\infty}\int_{G_i}|u_{k(j)}|\cr
&\le\sum_{i=0}^{j-1}\eta_i+\eta_j+\sum_{i=j+1}^{\infty}\eta_i
=\sum_{i=0}^{\infty}\eta_i
=\Bover{\gamma}{3}.\cr}$$
\noindent On the other hand, $|\int_{G_j}u_{k(j)}|\ge\gamma$. So
\Centerline{$|\int_Gu_{k(j)}|
=|\sum_{i=0}^{\infty}\int_{G_i}u_{k(j)}|
\ge\Bover23\gamma$.}
This is true for every $j$; because every weakly open set containing
$v$ meets $\{u_{k(j)}:j\in\Bbb N\}$, $|\int_Gv|\ge\bover23\gamma$ and
$|\int_Gu|\ge\bover23\gamma$. On the other hand,
\Centerline{$|\int_Gu|
=|\sum_{i=0}^{\infty}\int_{G_i}u|
\le\sum_{i=0}^{\infty}\int_{G_i}|u|
\le\sum_{i=0}^{\infty}\eta_i
=\Bover{\gamma}{3}$,}
\noindent which is absurd. \Bang
This contradiction shows that
$\lim_{n\to\infty}\sup_{u\in A}|\int_{F_n}u|=0$. As $\sequencen{F_n}$
is arbitrary, $A$ satisfies
the condition 246G(iii) and is uniformly integrable.
\medskip
{\bf (b)} Now assume that $A$ is uniformly integrable. I seek a weakly
compact set $C\supseteq A$.
\medskip
\quad{\bf (i)} For
each $n\in\Bbb N$, choose $E_n\in\Sigma$, $M_n\ge 0$ such that
$\mu E_n<\infty$ and $\int(|u|-M_n\chi E_n^{\ssbullet})^+\le 2^{-n}$ for
every $u\in A$. Set
\Centerline{$C=\{v:v\in L^1,\,|\int_Fv|\le M_n\mu(F\cap E_n)
+2^{-n}\Forall n\in\Bbb N,\,F\in\Sigma\}$,}
\noindent and note that $A\subseteq C$, because if $u\in A$ and
$F\in\Sigma$,
\Centerline{$|\int_Fu|
\le\int_F(|u|-M_n\chi E_n^{\ssbullet})^++\int_FM_n\chi E_n^{\ssbullet}
\le 2^{-n}+M_n\mu(F\cap E_n)$}
\noindent for every $n$. Observe also that $C$ is $\|\,\|_1$-bounded,
because
\Centerline{$\|u\|_1\le 2\sup_{F\in\Sigma}|\int_Fu|
\le 2\sup_{F\in\Sigma}(1+M_0\mu(F\cap E_0))\le 2(1+M_0\mu E_0)$}
\noindent for every $u\in C$ (using 246F).
\medskip
\quad{\bf (ii)} Because I am seeking to prove this theorem for
arbitrary measure spaces $(X,\Sigma,\mu)$, I cannot use 243G to identify
the dual of $L^1$. Nevertheless, 247B above shows that 243Gb it is
`nearly' valid, in the following
sense: if $h\in(L^1)^*$, there is a $v\in L^{\infty}$ such that
$h(u)=\int u\times v$ for every $u\in C$. \Prf\ Set
$G=\bigcup_{n\in\Bbb N}E_n\in\Sigma$, and define $U\subseteq L^1$ as
in 247A-247B. By 247B, there is a $v\in L^{\infty}$ such that
$h(u)=\int u\times v$ for every $u\in U$. But if $u\in C$,
we can express $u$ as $f^{\ssbullet}$ where $f:X\to\Bbb R$ is
measurable. If $F\in\Sigma$ and $F\cap G=\emptyset$, then
\Centerline{$|\int_Ff|=|\int_Fu|\le 2^{-n}+M_n\mu(F\cap E_n)
=2^{-n}$}
\noindent for every $n\in\Bbb N$, so $\int_Ff=0$; it follows that $f=0$
a.e.\ on $X\setminus G$ (131Fc), so that $f\times\chi G\eae f$ and
$u=u\times\chi G^{\ssbullet}$, that is, $u\in U$, and
$h(u)=\int u\times v$, as required.
\Qed
\medskip
\quad{\bf (iii)} So we may proceed, having an adequate description, not
of $(L^1(\mu))^*$ itself, but of its action on $C$.
Let $\Cal F$ be any ultrafilter on $L^1$ containing $C$ (see 2A3R).
For each $F\in\Sigma$, set
\Centerline{$\nu F=\lim_{u\to\Cal F}\int_Fu$;}
\noindent because
\Centerline{$\sup_{u\in C}|\int_Fu|\le\sup_{u\in C}\|u\|_1<\infty$,}
\noindent this is well-defined in $\Bbb R$ (2A3S(e-ii)). If $E$, $F$
are disjoint
members of $\Sigma$, then $\int_{E\cup F}u=\int_Eu+\int_Fu$ for every
$u\in C$, so
\Centerline{$\nu(E\cup F)
=\lim_{u\to\Cal F}\int_{E\cup F}u
=\lim_{u\to\Cal F}\int_{E}u+\lim_{u\to\Cal F}\int_{F}u
=\nu E+\nu F$}
\noindent (2A3Sf). Thus
$\nu:\Sigma\to\Bbb R$ is additive. Next, it is truly continuous with
respect to $\mu$. \Prf\ Given $\epsilon>0$, take $n\in\Bbb N$ such
that $2^{-n}\le\bover12\epsilon$, set $\delta=\epsilon/2(M_n+1)>0$ and
observe that
\Centerline{$|\nu F|\le\sup_{u\in C}|\int_Fu|
\le 2^{-n}+M_n\mu(F\cap E_n)\le\epsilon$}
\noindent whenever $\mu(F\cap E_n)\le\delta$.\ \Qed\ By the
Radon-Nikod\'ym theorem (232E), there is an $f_0\in{\eusm L}^1$ such
that $\int_Ff_0=\nu F$ for every $F\in\Sigma$. Set
$u_0=f_0^{\ssbullet}\in L^1$. If $n\in\Bbb N$, $F\in\Sigma$ then
\Centerline{$|\int_Fu_0|
=|\nu F|\le\sup_{u\in C}|\int_Fu|\le 2^{-n}+M_n\mu(F\cap E_n)$,}
\noindent so $u_0\in C$.
\medskip
\quad{\bf (iv)} Of course the point is that $\Cal F$ converges to $u_0$.
\Prf\ Let $h\in(L^1)^*$. Then there is a $v\in L^{\infty}$ such that
$h(u)=\int u\times v$ for every $u\in C$. Express $v$ as
$g^{\ssbullet}$, where $g:X\to\Bbb R$ is bounded and
$\Sigma$-measurable.
Let $\epsilon>0$. Take $a_0\le a_1\le\ldots\le a_n$ such that
$a_{i+1}-a_i\le\epsilon$ for each $i$ while $a_0\le g(x)<a_n$ for each
$x\in X$. Set $F_i=\{x:a_{i-1}\le g(x)<a_i\}$ for $1\le i\le n$, and
set $\tilde g=\sum_{i=1}^na_i\chi F_i$, $\tilde v=\tilde g^{\ssbullet}$;
then
$\|\tilde v-v\|_{\infty}\le\epsilon$. We have
$$\eqalign{\int u_0\times\tilde v
&=\sum_{i=1}^na_i\int_{F_i}u
=\sum_{i=1}^na_i\nu F_i\cr
&=\sum_{i=1}^{n}a_i\lim_{u\to\Cal F}\int_{F_i}u
=\lim_{u\to\Cal F}\sum_{i=1}^na_i\int_{F_i}u
=\lim_{u\to\Cal F}\int u\times\tilde v.\cr}$$
\noindent Consequently
$$\eqalign{\limsup_{u\to\Cal F}|\int u\times v-\int u_0\times v|
&\le|\int u_0\times v-\int u_0\times \tilde v|
+\sup_{u\in C}|\int u\times v-\int u\times\tilde v|\cr
&\le\|u_0\|_1\|v-\tilde v\|_{\infty}
+\sup_{u\in C}\|u\|_1\|v-\tilde v\|_{\infty}\cr
&\le2\epsilon\sup_{u\in C}\|u\|_1.\cr}$$
\noindent As $\epsilon$ is arbitrary,
$$\eqalign{\limsup_{u\to\Cal F}|h(u)-h(u_0)|
&=\limsup_{u\to\Cal F}|\int u\times v-\int u_0\times v|
=0.\cr}$$
\noindent As $h$ is arbitrary,
$u_0$ is a limit of $\Cal F$ in $C$ for the weak topology of $L^1$.\ \Qed
As $\Cal F$ is arbitrary, $C$ is weakly compact in $L^1$, and the proof is
complete.
}%end of proof of 247C
\leader{247D}{Corollary} Let $(X,\Sigma,\mu)$ and $(Y,\Tau,\nu)$ be any
two measure spaces, and $T:L^1(\mu)\to L^1(\nu)$ a continuous linear
operator. Then $T[A]$ is a uniformly integrable subset of $L^1(\nu)$
whenever $A$ is a uniformly integrable subset of $L^1(\mu)$.
\proof{ The point is that $T$ is continuous for the respective weak
topologies (2A5If). If $A\subseteq L^1(\mu)$ is uniformly
integrable, then there is a weakly compact $C\supseteq A$, by 247C;
$T[C]$, being the image of a compact set under a continuous map,
must be weakly compact (2A3N(b-ii)); so $T[C]$ and $T[A]$ are
uniformly integrable by the other half of 247C.
}%end of proof of 247D
\cmmnt{
\leader{247E}{Complex $L^1$} There are no difficulties, and no
surprises, in proving 247C for $L^1_{\Bbb C}$. If we follow the same
proof, everything works, but of course we must remember to change the
constant when applying 246F, or rather 246K, in part (b-i) of the
proof.
}
\exercises{
\leader{247X}{Basic exercises $\pmb{>}$(a)} Let $(X,\Sigma,\mu)$ be any
measure space. Show that if
$A\subseteq L^1=L^1(\mu)$ is relatively weakly compact, then $\{v:v\in
L^1,\,|v|\le |u|$ for some $u\in A\}$ is
relatively weakly compact.
%247C
\spheader 247Xb Let $(X,\Sigma,\mu)$ be a measure space. On
$L^1=L^1(\mu)$ define pseudometrics $\rho_F$, $\rho'_w$ for
$F\in\Sigma$, $w\in L^{\infty}(\mu)$ by setting
$\rho_F(u,v)=|\int_Fu-\int_Fv|$, $\rho'_w(u,v)=|\int u\times w-\int
v\times w|$ for $u$, $v\in L^1$. Show that on any $\|\,\|_1$-bounded
subset of $L^1$, the topology defined by $\{\rho_F:F\in\Sigma\}$ agrees
with the topology generated by $\{\rho'_w:w\in L^{\infty}\}$.
%247C
\sqheader 247Xc Show that for any set $X$ a subset of $\ell^1=\ell^1(X)$
is compact for the weak topology of $\ell^1$ iff it is compact for the
norm topology of $\ell^1$. \Hint{246Xd.}
%247C
\spheader 247Xd Use the argument of (a-ii) in the proof of 247C to show
directly that if $A\subseteq\ell^1(\Bbb N)$ is weakly compact then
$\inf_{n\in\Bbb N}|u_n(n)|=0$ for any sequence $\sequencen{u_n}$ in $A$.
%247C
\spheader 247Xe Let $(X,\Sigma,\mu)$ and $(Y,\Tau,\nu)$ be measure
spaces, and $T:L^2(\nu)\to L^1(\mu)$ any bounded linear operator. Show
that $\{Tu:u\in L^2(\nu),\,\|u\|_2\le 1\}$ is uniformly integrable in
$L^1(\mu)$. \Hint{use 244K to see that $\{u:\|u\|_2\le 1\}$ is weakly
compact in $L^2(\nu)$.}
%247C
\leader{247Y}{Further exercises (a)}
%\spheader 247Ya
Let $(X,\Sigma,\mu)$ be a measure space. Take $1<p<\infty$ and
$M\ge 0$ and set $A=\{u:u\in L^p=L^p(\mu),\,\|u\|_p\le M\}$. Write
$\frak S_A$ for the topology of convergence in measure on $A$, that is, the
subspace topology induced by the topology of convergence in measure on
$L^0(\mu)$. Show that if $h\in(L^p)^*$ then $h\restr A$ is continuous
for $\frak S_A$; so that if $\frak T$ is the weak topology on $L^p$,
then the subspace topology $\frak T_A$ is included in $\frak S_A$.
%247C
\spheader 247Yb Let $(X,\Sigma,\mu)$ be a measure space and
$\sequencen{u_n}$ a sequence in $L^1=L^1(\mu)$ such that
$\lim_{n\to\infty}\int_Fu_n$ is defined for every $F\in\Sigma$. Show
that $\{u_n:n\in\Bbb N\}$ is weakly convergent. \Hint{246Yh.}
%Find
%an alternative argument relying on 2A5J and the result of 246Yj. (?)
%247C
}%end of exercises
\endnotes{\Notesheader{247} In 247D and 247Xa I try to suggest the power
of the identification between weak compactness and uniform
integrability. That a continuous image of a weakly compact set should
be weakly compact is a commonplace of functional analysis; that the
solid hull of a uniformly integrable set should be uniformly integrable
is immediate from the definition. But I see no simple arguments to
show that a continuous image of a uniformly integrable set should be
uniformly integrable, or that the solid hull of a weakly compact set
should be relatively weakly compact. (Concerning the former, an
alternative route does exist; see 371Xf in the next volume.)
I can distinguish two important ideas in the proof of 247C. The first,
in (a-ii) of the proof, is a careful manipulation of sequences; it is
the argument needed to show that a weakly compact subset of $\ell^1$ is
norm-compact. (You may find it helpful to write out a solution to
247Xd.) The $F_{n(k)}$ and $u_k$ are chosen to mimic the situation in
which we have a sequence in $\ell^1$ such that $u_k(k)=1$ for each $k$.
The $k(i)$ are chosen so that the `hump' moves sufficiently rapidly
along for $u_{k(j)}(k(i))$ to be very small whenever $i\ne j$.
But this means that $\sum_{i=0}^{\infty}u_{k(j)}(k(i))$ (corresponding
to $\int_Gu_{k(j)}$ in the proof) is always substantial, while
$\sum_{i=0}^{\infty}v(k(i))$ will be small for any proposed cluster
point $v$ of $\sequence{j}{u_{k(j)}}$. I used similar techniques in
\S246; compare 246Yg.
In the other half of the proof of 247C, the strategy is clearer.
Members of $L^1$ correspond to truly continuous functionals on $\Sigma$;
the uniform integrability of $C$ makes the corresponding set of
functionals `uniformly truly continuous', so that any limit
functional will also be truly continuous and will give us a member of
$L^1$ via the Radon-Nikod\'ym theorem. A straightforward approximation
argument ((b-iv) in the proof, and 247Xb) shows that
$\lim_{u\in\Cal F}\int u\times w=\int v\times w$ for every
$w\in L^{\infty}$. For
localizable measures $\mu$, this would complete the proof. For the
general case, we need another step, here done in 247A-247B; a uniformly
integrable subset of $L^1$ effectively lives on a $\sigma$-finite part
of the measure space, so that we can ignore the rest of the measure and
suppose that we have a localizable measure space.
The conditions (ii)-(iv) of 246G make it plain that weak compactness
in $L^1$ can be effectively discussed in terms of sequences; see also
246Yh. I should remark that this is a general feature of weak
compactness in Banach spaces (2A5J). Of course the disjoint-sequence
formulations in 246G are characteristic of $L^1$ -- I mean that while
there are similar results applicable elsewhere (see {\smc Fremlin 74},
chap.\ 8), the ideas are clearest and most dramatically expressed in
their application to $L^1$.
}%end of notes
\frnewpage