forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt254.tex
2267 lines (1820 loc) · 92.7 KB
/
mt254.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt254.tex}
\versiondate{23.2.16}
\copyrightdate{2002}
\def\chaptername{Product measures}
\def\sectionname{Infinite products}
\newsection{254}
I come now to the second basic idea of this
chapter: the description of a product measure on the product of a
(possibly large) family of probability spaces. The section begins with
a construction on similar lines to that of \S251 (254A-254F) and its
defining property in terms of \imp\ functions (254G). I discuss the
usual measure on $\{0,1\}^I$
(254J-254K), subspace measures (254L) and various properties of
subproducts (254M-254T), including a study of the associated conditional
expectation operators (254R-254T).
\leader{254A}{Definitions (a)} Let $\familyiI{(X_i,\Sigma_i,\mu_i)}$ be
a family of probability
spaces. Set $X=\prod_{i\in I}X_i$, the family of functions $x$ with
domain $I$ such that $x(i)\in X_i$ for every $i\in I$. In this
context, I will say that a {\bf measurable cylinder} is a subset of $X$
expressible in the form
\Centerline{$C=\prod_{i\in I}C_i,$}
\noindent where $C_i\in\Sigma_i$ for every $i\in I$ and
$\{i:C_i\ne X_i\}$ is finite. Note that for a non-empty $C\subseteq X$
this expression is unique. \prooflet{\Prf\ Suppose that
$C=\prod_{i\in I}C_i=\prod_{i\in I}C'_i$. For each $i\in I$ set
\Centerline{$D_i=\{x(i):x\in C\}.$}
\noindent Of course $D_i\subseteq C_i$. Because $C\ne\emptyset$, we
can fix on some $z\in C$. If $i\in I$ and $t\in C_i$,
consider $x\in X$ defined by setting
\Centerline{$x(i)=t$, \quad$x(j)=z(j)\text{ for }j\ne i;$}
\noindent then $x\in C$ so $t=x(i)\in D_i$. Thus $D_i=C_i$ for
$i\in I$. Similarly, $D_i=C'_i$.\ \Qed}
\header{254Ab}{\bf (b)} We can therefore define a functional
$\theta_0:\Cal C\to[0,1]$, where $\Cal C$ is the set of measurable
cylinders, by setting
\Centerline{$\theta_0C=\prod_{i\in I}\mu_iC_i$}
\noindent whenever $C_i\in\Sigma_i$ for every $i\in I$ and
$\{i:C_i\ne X_i\}$ is finite\cmmnt{,
noting that only finitely many terms in the product can differ from $1$,
so that it can safely be treated as a finite product. If
$C=\emptyset$, one of the $C_i$ must be empty, so $\theta_0C$ is surely
$0$, even though the expression of $C$ as $\prod_{i\in I}C_i$
is no longer unique}.
\header{254Ac}{\bf (c)} Now define $\theta:\Cal PX\to[0,1]$ by setting
\Centerline{$\theta A
=\inf\{\sum_{n=0}^{\infty}\theta_0C_n:C_n\in\Cal C
\text{ for every }n\in\Bbb N$, $A\subseteq\bigcup_{n\in\Bbb N}C_n\}$.}
\leader{254B}{Lemma} The functional $\theta$ defined in 254Ac is always
an outer measure on $X$.
\proof{ Use exactly the same arguments as those in 251B above.}
\leader{254C}{Definition} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$ be any indexed family of
probability spaces, and $X$ the Cartesian
product $\prod_{i\in I}X_i$. The {\bf product measure} on $X$ is the
measure defined by \Caratheodory's method\cmmnt{ (113C)} from the
outer measure $\theta$ defined in 254A.
\cmmnt{
\leader{254D}{Remarks (a)} In 254Ab, I asserted that if $C\in\Cal C$ and
no $C_i$ is empty, then nor is $C=\prod_{i\in I}C_i$. This is the
`Axiom of Choice': the product of
any family $\langle C_i\rangle_{i\in I}$ of
non-empty sets is non-empty, that is, there is a `choice function'
$x$ with domain $I$ picking out a distinguished member $x(i)$ of each
$C_i$. In this volume I have not attempted to be scrupulous in
indicating uses of the axiom of choice. In fact the use here is not an
absolutely vital one; I mean, the theory of infinite products, even
uncountable products, of probability spaces does not change character
completely in the absence of the full axiom of choice (provided, that
is, that we allow ourselves to use the countable axiom of choice). The
point is that all we really need, in the present context, is that
$X=\prod_{i\in I}X_i$ should be non-empty; and in many contexts we can
prove this, for the particular cases of interest, without using the
axiom of choice, by actually exhibiting a member of $X$. The simplest
case in which this is difficult is when the $X_i$ are uncontrolled Borel
subsets of $[0,1]$; and even then, if they are presented with coherent
descriptions, we may, with appropriate labour, be able to construct a
member of $X$. But clearly such a process is liable to slow us down a
good deal, and for the moment I think there is no great virtue in taking
so much trouble.
\header{254Db}{\bf (b)}
I have given this section the title `infinite products', but it
is useful to be able to apply the ideas to finite $I$; I should mention
in particular the cases $\#(I)\le 2$.
\medskip
\quad {\bf (i)} If $I=\emptyset$, $X$ consists of the unique function
with domain $I$, the empty function. If we identify a function with its
graph, then $X$ is actually $\{\emptyset\}$; in any case, $X$ is to be
a singleton set, with $\lambda X=1$.
\medskip
\quad{\bf (ii)} If $I$ is a singleton $\{i\}$, then we can identify $X$
with $X_i$; $\Cal C$ becomes identified with $\Sigma_i$ and $\theta_0$
with $\mu_i$, so that $\theta$ can be identified with $\mu_i^*$
and the `product measure' becomes the measure on $X_i$
defined from $\mu_i^*$, that is, the completion of $\mu_i$\cmmnt{
(see 213Xa(iv))}.
\medskip
\quad{\bf (iii)} If $I$ is a doubleton $\{i,j\}$, then we can identify
$X$ with $X_i\times X_j$; in this case the definitions of 254A and 254C
match exactly with those of
251A and 251C, so that $\lambda$ here can be identified with the
primitive product measure as defined in 251C. Because $\mu_i$ and
$\mu_j$ are both totally finite, this agrees with the c.l.d.\ product
measure of 251F.
}%end of comment
\leader{254E}{Definition} Let $\langle X_i\rangle_{i\in I}$ be any
family of sets, and $X=\prod_{i\in I}X_i$. If $\Sigma_i$ is a
$\sigma$-subalgebra of subsets of $X_i$ for each $i\in I$, I write
$\Tensorhat_{i\in I}\Sigma_i$ for the $\sigma$-algebra of subsets of $X$
generated by
\Centerline{$\{\{x:x\in X$, $x(i)\in E\}: i\in I$, $E\in\Sigma_i\}$.}
\cmmnt{\noindent (Compare 251D.)}
\leader{254F}{Theorem} Let $\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$
be a family of probability spaces, and let $\lambda$ be the product
measure on $X=\prod_{i\in I}X_i$\cmmnt{ defined as in 254C}; let
$\Lambda$ be its domain.
(a) $\lambda X=1$.
(b) If $E_i\in\Sigma_i$ for every $i\in I$, and $\{i:E_i\ne X_i\}$ is
countable, then $\prod_{i\in I}E_i\in\Lambda$, and
$\lambda(\prod_{i\in I}E_i)=\prod_{i\in I}\mu_iE_i$. In particular,
$\lambda C=\theta_0C$
for every measurable cylinder $C$,\cmmnt{ as defined in 254A,} and if
$j\in I$ then $x\mapsto x(j):X\to X_j$ is inverse-measure-preserving.
(c) $\Tensorhat_{i\in I}\Sigma_i\subseteq\Lambda$.
(d) $\lambda$ is complete.
(e) For every $W\in\Lambda$ and $\epsilon>0$ there is a finite family
$C_0,\ldots,C_n$ of measurable cylinders such that
$\lambda(W\symmdiff\bigcup_{k\le n}C_k)\penalty-100\le\epsilon$.
(f) For every $W\in\Lambda$ there are $W_1$,
$W_2\in\Tensorhat_{i\in I}\Sigma_i$ such that
$W_1\subseteq W\subseteq W_2$ and $\lambda(W_2\setminus W_1)=0$.
\cmmnt{\medskip
\noindent{\bf Remark} Perhaps I should pause to interpret the
product $\prod_{i\in I}\mu_iE_i$. Because all the $\mu_iE_i$ belong to
$[0,1]$, this is simply $\inf_{J\subseteq I,J\text{ is
finite}}\prod_{i\in J}\mu_iE_i$, taking the empty product to be $1$.
}%end of comment
\proof{ Throughout this proof, define $\Cal C$, $\theta_0$
and $\theta$ as in 254A. I will write out an argument which applies to
finite $I$ as well as infinite $I$, but you may reasonably
prefer to assume that $I$ is infinite on first reading.
\medskip
{\bf (a)} Of course $\lambda X=\theta X$, so I have to show that
$\theta X=1$. Because $X$, $\emptyset\in\Cal C$ and
$\theta_0X=\prod_{i\in I}\mu_iX_i=1$ and $\theta_0\emptyset=0$,
\Centerline{$\theta X\le\theta_0X+\theta_0\emptyset+\ldots=1$.}
\noindent I therefore have to show
that $\theta X\ge 1$. \Quer\ Suppose, if possible, otherwise.
\medskip
\quad{\bf (i)} There is a sequence $\sequencen{C_n}$ in $\Cal C$,
covering $X$, such that $\sum_{n=0}^{\infty}\theta_0C_n<1$. For each
$n\in\Bbb N$, express $C_n$ as $\{x:x(i)\in E_{ni}\Forall i\in I\}$,
where every $E_{ni}\in\Sigma_i$ and $J_n=\{i:E_{ni}\ne X_i\}$ is finite.
No $J_n$ can be empty, because
$\theta_0C_n<1=\theta_0X$; set $J=\bigcup_{n\in\Bbb N}J_n$. Then $J$
is a countable non-empty subset of $I$. Set $K=\Bbb N$ if $J$ is
infinite, $\{k:0\le k<\#(J)\}$ if $J$ is finite; let
$k\mapsto i_k:K\to J$ be a bijection.
For each $k\in K$, set $L_k=\{i_j:j<k\}\subseteq J$, and set
$\alpha_{nk}=\prod_{i\in I\setminus L_k}\mu_iE_{ni}$ for $n\in\Bbb N$,
$k\in K$. If $J$ is finite, then we can identify $L_{\#(J)}$ with $J$,
and set $\alpha_{n,\#(J)}=1$ for every
$n$. We have $\alpha_{n0}=\theta_0C_n$ for each $n$, so
$\sum_{n=0}^{\infty}\alpha_{n0}<1$. For $n\in\Bbb N$, $k\in K$ and
$t\in X_{i_k}$ set
$$\eqalign{f_{nk}(t)&=\alpha_{n,k+1}\text{ if }t\in E_{n,i_k},\cr
&=0\text{ otherwise}.\cr}$$
\noindent Then
\Centerline{$\int f_{nk}d\mu_{i_k}
=\alpha_{n,k+1}\mu_{i_k}E_{n,i_k}=\alpha_{nk}$.}
\medskip
\quad{\bf (ii)} Choose $t_k\in X_{i_k}$ inductively, for $k\in K$, as
follows. The inductive hypothesis will be that
$\sum_{n\in M_k}\alpha_{nk}<1$, where
$M_k=\{n:n\in \Bbb N$, $t_j\in E_{n,i_j}\Forall j<k\}$; of course
$M_0=\Bbb N$, so the induction starts. Given that
\Centerline{$1>\sum_{n\in M_k}\alpha_{nk}
=\sum_{n\in M_k}\int f_{nk}d\mu_{i_k}
=\int(\sum_{n\in M_k}f_{nk})d\mu_{i_k}$}
\noindent (by B.Levi's theorem), there must be a $t_k\in X_{i_k}$ such
that $\sum_{n\in M_k}f_{nk}(t_{k})<1$. Now for such a choice of
$t_k$, $\alpha_{n,k+1}=f_{nk}(t_k)$ for every $n\in M_{k+1}$, so that
$\sum_{n\in M_{k+1}}\alpha_{n,k+1}<1$, and the induction continues,
unless $J$ is finite and $k+1=\#(J)$. In this last case we must just
have $M_{\#(J)}=\emptyset$, because $\alpha_{n,\#(J)}=1$ for every $n$.
\medskip
\quad{\bf (iii)} If $J$ is infinite, we obtain a full sequence
$\sequence{k}{t_k}$; if $J$ is finite, we obtain just a finite sequence
$\langle t_k\rangle_{k<\#(J)}$. In either case, there is an $x\in X$
such that $x(i_k)=t_k$ for each $k\in K$. Now there must be some
$m\in\Bbb N$ such that $x\in C_m$. Because $J_m=\{i:E_{mi}\ne X_i\}$
is finite, there is a $k\in\Bbb N$ such that $J_m\subseteq L_k$
(allowing $k=\#(J)$ if $J$ is finite). Now $m\in M_k$, so in fact we
cannot have $k=\#(J)$, and
$\alpha_{mk}=1$, so $\sum_{n\in M_k}\alpha_{nk}\ge 1$, contrary to the
inductive hypothesis.\ \Bang
This contradiction shows that $\theta X=1$.
\medskip
{\bf (b)(i)} I take the particular case first.
Suppose that $j\in I$ and
$E\in\Sigma_j$, and let $C\in\Cal C$; set $W=\{x:x\in X$, $x(j)\in
E\}$;
then $C\cap W$ and $C\setminus W$ both belong to $\Cal C$, and $\theta_0
C=\theta_0(C\cap W)+\theta_0(C\setminus W)$. \Prf\ If
$C=\prod_{i\in I}C_i$, where $C_i\in\Sigma_i$ for each $i$, then
$C\cap W=\prod_{i\in I}C_i'$, where $C_i'=C_i$ if $i\ne j$, and
$C_j'=C_j\cap E$; similarly,
$C\setminus W=\prod_{i\in I}C_i''$, where $C_i''=C_i$ if $i\ne j$, and
$C_j''=C_j\setminus E$. So both belong to $\Cal C$, and
\Centerline{$\theta_0(C\cap W)+\theta_0(C\setminus W)
=(\mu_j(C_j\cap E)+\mu_j(C_j\setminus E))\prod_{i\ne j}\mu C_i
=\prod_{i\in I}\mu C_i
=\theta_0C$. \Qed}
\medskip
\quad{\bf (ii)} Now suppose that $A\subseteq X$ is any set, and
$\epsilon>0$. Then there is a sequence $\sequencen{C_n}$ in $\Cal C$
such that $A\subseteq\bigcup_{n\in\Bbb N}C_n$ and
$\sum_{n=0}^{\infty}\theta_0C_n\le\theta A+\epsilon$. In this case
\Centerline{$A\cap W\subseteq\bigcup_{n\in\Bbb N}C_n\cap W$,\quad
$A\setminus W\subseteq\bigcup_{n\in\Bbb N}C_n\setminus W,$}
\noindent so
\Centerline{$\theta(A\cap W)\le\sum_{n=0}^{\infty}\theta_0(C_n\cap
W),\quad
\theta(A\setminus W)\le\sum_{n=0}^{\infty}\theta_0(C_n\setminus W),$}
\noindent and
\Centerline{$\theta(A\cap W)+\theta(A\setminus W)
\le\sum_{n=0}^{\infty}\theta_0(C_n\cap W)+\theta_0(C_n\setminus W)
=\sum_{n=0}^{\infty}\theta_0C_n
\le\theta A+\epsilon.$}
\noindent As $\epsilon$ is arbitrary, $\theta(A\cap W)+\theta(A\setminus
W)\le\theta A$; as $A$ is arbitrary, $W\in\Lambda$.
\medskip
\quad{\bf (iii)}
I show next that if $J\subseteq I$ is finite and $C_i\in\Sigma_i$ for
each $i\in J$, and $C=\{x:x\in X$, $x(i)\in C_i\Forall i\in J\}$,
then $C\in\Lambda$ and $\lambda C=\prod_{i\in J}\mu_iC_i$. \Prf\
Induce on $\#(J)$. If $\#(J)=0$, that is, $J=\emptyset$, then $C=X$
and this is part (a). For the inductive step to $\#(J)=n+1$, take any
$j\in J$ and set $J'=J\setminus\{j\}$,
\Centerline{$C'=\{x:x\in X$, $x(i)\in C_i\Forall i\in J'\},$}
\Centerline{$C''=C'\setminus C=\{x:x\in C'$, $x(j)\in X_j\setminus
C_j\}.$}
\noindent Then $C$, $C'$, $C''$ all belong to $\Cal C$, and $\theta_0
C'=\prod_{i\in J'}\mu_iC_i=\alpha$ say, $\theta_0 C=\alpha\mu_jC_j$,
$\theta_0 C''=\alpha(1-\mu_jC_j)$. Moreover, by the inductive
hypothesis, $C'\in\Lambda$ and $\alpha=\lambda C'=\theta C'$. So
$C=C'\cap\{x:x(j)\in C_j\}\in\Lambda$ by (ii), and $C''=C'\setminus
C\in\Lambda$.
We surely have $\lambda C=\theta C\le\theta_0 C$, $\lambda
C''\le\theta_0 C''$; but also
\Centerline{$\alpha=\lambda C'=\lambda C+\lambda C''\le\theta_0
C+\theta_0C''=\alpha,$}
\noindent so in fact
\Centerline{$\lambda C=\theta_0 C=\alpha\mu_jC_j
=\prod_{i\in J}\mu C_i$,}
\noindent and the induction proceeds.\ \Qed
\medskip
\quad{\bf (iv)} Now let us return to the general case of a set $W$ of
the form $\prod_{i\in I}E_i$ where $E_i\in\Sigma_i$ for each $i$, and
$K=\{i:E_i\ne X_i\}$ is countable. If $K$ is finite then
$W=\{x:x(i)\in E_i\Forall i\in K\}$ so $W\in\Lambda$ and
\Centerline{$\lambda W
=\prod_{i\in K}\mu_iE_i=\prod_{i\in I}\mu_iE_i$.}
\noindent Otherwise, let
$\sequencen{i_n}$ be an enumeration of $K$. For each $n\in\Bbb N$ set
$W_n=\{x:x\in X$, $x(i_k)\in E_{i_k}\Forall k\le n\}$; then we know
that $W_n\in\Lambda$ and that
$\lambda W_n=\prod_{k=0}^n\mu_{i_k}E_{i_k}$. But $\sequencen{W_n}$ is
a non-increasing sequence with intersection $W$, so $W\in\Lambda$ and
\Centerline{$\lambda W=\lim_{n\to\infty}\lambda W_n
=\prod_{i\in K}\mu_iE_i
=\prod_{i\in I}\mu_iE_i.$}
\medskip
{\bf (c)} is an immediate consequence of (b) and the definition of
$\Tensorhat_{i\in I}\Sigma_i$.
\medskip
{\bf (d)} Because $\lambda$ is constructed by \Caratheodory's method it
must be complete.
\medskip
{\bf (e)} Let $\sequencen{C_n}$ be a sequence in $\Cal C$ such that
$W\subseteq\bigcup_{n\in\Bbb N}C_n$ and
$\sum_{n=0}^{\infty}\theta_0C_n\le\theta W+\bover12\epsilon$. Set
$V=\bigcup_{n\in\Bbb N}C_n$; by (b), $V\in\Lambda$. Let $n\in\Bbb N$
be
such that $\sum_{i=n+1}^{\infty}\theta_0C_i\le\bover12\epsilon$, and
consider $W'=\bigcup_{k\le n}C_k$.
Since $V\setminus W'\subseteq\bigcup_{i>n}C_i$,
$$\eqalign{\lambda(W\symmdiff W')
&\le\lambda(V\setminus W)+\lambda(V\setminus W')
=\lambda V-\lambda W+\lambda(V\setminus W')
=\theta V-\theta W+\theta(V\setminus W')\cr
&\le\sum_{i=0}^{\infty}\theta_0C_i-\theta W+\sum_{i=n+1}\theta_0C_i
\le\Bover12\epsilon+\Bover12\epsilon
=\epsilon.\cr}$$
\medskip
{\bf (f)(i)} If $W\in\Lambda$ and $\epsilon>0$ there is a
$V\in\Tensorhat_{i\in I}\Sigma_i$ such that $W\subseteq V$ and $\lambda
V\le\lambda W+\epsilon$. \Prf\ Let $\sequencen{C_n}$ be a sequence in
$\Cal C$ such that $W\subseteq\bigcup_{n\in\Bbb N}C_n$ and
$\sum_{n=0}^{\infty}\theta_0C_n\le\theta W+\epsilon$. Then
$C_n\in\Tensorhat_{i\in I}\Sigma_i$ for each $n$, so
$V=\bigcup_{n\in\Bbb N}C_n\in\Tensorhat_{i\in I}\Sigma_i$. Now
$W\subseteq V$, and
\Centerline{$\lambda V=\theta V\le\sum_{n=0}^{\infty}\theta_0C_n
\le\theta W+\epsilon=\lambda W+\epsilon$.\ \Qed}
\medskip
\quad{\bf (ii)} Now, given $W\in\Lambda$, let $\sequencen{V_n}$ be a
sequence of sets in $\Tensorhat_{i\in I}\Sigma_i$ such that $W\subseteq
V_n$ and $\lambda V_n\le\lambda W+2^{-n}$ for each $n$; then
$W_2=\bigcap_{n\in\Bbb N}V_n$ belongs to $\Tensorhat_{i\in I}\Sigma_i$
and
$W\subseteq W_2$ and $\lambda W_2=\lambda W$. Similarly, there is a
$W'_2\in\Tensorhat_{i\in I}\Sigma_i$ such that $X\setminus W\subseteq
W'_2$ and $\lambda W'_2=\lambda(X\setminus W)$, so we may take
$W_1=X\setminus W'_2$ to complete the proof.
}
\leader{254G}{}\cmmnt{ The following is a fundamental, indeed
defining, property of product measures. (Compare 251L.)
\medskip
\noindent}{\bf Theorem} Let $\familyiI{(X_i,\Sigma_i,\mu_i)}$ be a
family
of probability spaces with product $(X,\Lambda,\lambda)$. Let
$(Y,\Tau,\nu)$ be a complete probability space and $\phi:Y\to X$ a
function.
Suppose that $\nu^*\phi^{-1}[C]\le\lambda C$ for every measurable
cylinder $C\subseteq X$. Then $\phi$ is \imp.
In particular, $\phi$ is \imp\ iff $\phi^{-1}[C]\in\Tau$ and
$\nu\phi^{-1}[C]=\lambda C$ for every measurable cylinder
$C\subseteq X$.
\cmmnt{\medskip
\noindent{\bf Remark} By $\nu^*$ I mean the usual outer measure defined
from $\nu$ as in \S132.
}
\proof{{\bf (a)} First note that, writing $\theta$ for the outer measure
of 254A, $\nu^*\phi^{-1}[A]\le\theta A$ for every $A\subseteq X$.
\Prf\ Given $\epsilon>0$, there is a sequence $\sequencen{C_n}$ of
measurable cylinders such that $A\subseteq\bigcup_{n\in\Bbb N}C_n$ and
$\sum_{n=0}^{\infty}\theta_0C_n\le\theta A+\epsilon$, where $\theta_0$
is the functional of 254A. But we know that $\theta_0C=\lambda C$ for
every measurable cylinder $C$ (254Fb), so
\Centerline{$\nu^*\phi^{-1}[A]
\le\nu^*(\bigcup_{n\in\Bbb N}\phi^{-1}[C_n])
\le\sum_{n=0}^{\infty}\nu^*\phi^{-1}[C_n]
\le\sum_{n=0}^{\infty}\lambda C_n
\le\theta A+\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\nu^*\phi^{-1}[A]\le\theta A$.\
\Qed
\medskip
{\bf (b)} Now take any $W\in\Lambda$. Then there are $F$, $F'\in\Tau$
such that
\Centerline{$\phi^{-1}[W]\subseteq F$, \quad$\phi^{-1}[X\setminus
W]\subseteq F'$,}
\Centerline{$\nu F=\nu^*\phi^{-1}[W]\le\theta W=\lambda W$,
\quad$\nu F'\le\lambda[X\setminus W]$.}
\noindent We have
\Centerline{$F\cup F'\supseteq\phi^{-1}[W]\cup\phi^{-1}[X\setminus
W]=Y$,}
\noindent so
\Centerline{$\nu(F\cap F')=\nu F+\nu F'-\nu(F\cup F')
\le\lambda W+\lambda(X\setminus W)-1=0$.}
\noindent Now
\Centerline{$F\setminus\phi^{-1}[W]\subseteq F\cap\phi^{-1}[X\setminus
W]\subseteq F\cap F'$}
\noindent is $\nu$-negligible. Because $\nu$ is complete,
$F\setminus\phi^{-1}[W]\in\Tau$ and
$\phi^{-1}[W]=F\setminus(F\setminus\phi^{-1}[W])$ belongs to $\Tau$.
Moreover,
\Centerline{$1=\nu F+\nu F'\le\lambda W+\lambda(X\setminus W)=1$,}
\noindent so we must have $\nu F=\lambda W$; but this means that
$\nu\phi^{-1}[W]=\nu W$. As $W$ is arbitrary, $\phi$ is \imp.
}%end of proof of 254G
\leader{254H}{Corollary} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$
and $\langle(Y_i,\Tau_i,\nu_i)\rangle_{i\in I}$ be two families of
probability spaces, with products $(X,\Lambda,\lambda)$ and
$(Y,\Lambda',\lambda')$. Suppose that for each $i\in I$ we are given
an \imp\ function $\phi_i:X_i\to Y_i$. Set
$\phi(x)=\familyiI{\phi_i(x(i))}$ for $x\in X$. Then $\phi:X\to Y$ is
\imp.
\proof{ If $C=\prod_{i\in I}C_i$ is a measurable cylinder in $Y$, then
$\phi^{-1}[C]=\prod_{i\in I}\phi_i^{-1}[C_i]$ is a measurable cylinder
in
$X$, and
\Centerline{$\lambda\phi^{-1}[C]
=\prod_{i\in I}\mu_i\phi_i^{-1}[C_i]
=\prod_{i\in I}\nu_i C_i
=\lambda'C$.}
\noindent Since $\lambda$ is a complete probability measure, 254G tells
us that $\phi$ is \imp.
}%end of proof of 254H
\leader{254I}{}\cmmnt{ Corresponding to 251T we have the following.
\medskip
\noindent}{\bf Proposition} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$ be a family of probability
spaces, $\lambda$ the product measure
on $X=\prod_{i\in I}X_i$, and $\Lambda$ its domain. Then $\lambda$ is
also the product of the
completions $\hat\mu_i$ of the $\mu_i$\cmmnt{ (212C)}.
\proof{ Write $\hat\lambda$ for the product of the $\hat\mu_i$, and
$\hat\Lambda$ for its domain. (i) The identity map from $X_i$ to
itself is \imp\ if regarded as a map from $(X_i,\hat\mu_i)$ to
$(X_i,\mu_i)$, so
the identity map on $X$ is \imp\ if regarded as a map from
$(X,\hat\lambda)$ to $(X,\lambda)$, by 254H; that is,
$\Lambda\subseteq\hat\Lambda$ and $\lambda=\hat\lambda\restr\Lambda$.
(ii) If $C$ is a measurable cylinder for $\langle\hat\mu_i\rangle_{i\in
I}$, that is, $C=\prod_{i\in I}C_i$ where $C_i\in\hat\Sigma_i$ for every
$i$ and $\{i:C_i\ne X_i\}$ is
finite, then for each $i\in I$ we can find a $C'_i\in\Sigma_i$ such that
$C_i\subseteq C'_i$ and $\mu_iC'_i=\hat\mu_iC_i$; setting
$C'=\prod_{i\in I}C'_i$, we get
\Centerline{$\lambda^*C\le\lambda C'=\prod_{i\in I}\mu_iC'_i
=\prod_{i\in I}\hat\mu_iC_i=\hat\lambda C$.}
\noindent By 254G, $\lambda W$ must be defined and equal to
$\hat\lambda W$ whenever $W\in\hat\Lambda$. Putting this
together with (i), we see that $\lambda=\hat\lambda$.
}%end of proof of 254I
\leader{254J}{}{\bf The product measure on $\{0,1\}^I$ (a)} Perhaps the
most important of all examples of infinite product measures is the case
in which each factor $X_i$ is just $\{0,1\}$ and each $\mu_i$ is the
`fair-coin' probability measure, setting
\Centerline{$\mu_i\{0\}=\mu_i\{1\}=\Bover12$.}
\noindent In this case, the product $X=\{0,1\}^I$ has a family
$\langle E_i\rangle_{i\in I}$ of measurable sets such that,
writing $\lambda$ for the product measure on $X$,
\Centerline{$\lambda(\bigcap_{i\in J}E_i)=2^{-\#(J)}$ if $J\subseteq I$
is finite.}
\noindent\prooflet{(Just take $E_i=\{x:x(i)=1\}$ for each $i$.) }I
will call this
$\lambda$ the {\bf usual measure} on $\{0,1\}^I$. Observe that if $I$
is finite then $\lambda\{x\}=2^{-\#(I)}$ for each
$x\in X$\cmmnt{ (using
254Fb)}. On the other hand, if $I$ is infinite, then $\lambda\{x\}=0$
for every $x\in X$\prooflet{ (because, again using 254Fb,
$\lambda^*\{x\}\le 2^{-n}$ for every $n$)}.
\spheader 254Jb There is a natural bijection between $\{0,1\}^I$ and
$\Cal PI$, matching $x\in\{0,1\}^I$ with $\{i:i\in I$, $x(i)=1\}$.
So we get a standard measure $\tilde\lambda$ on $\Cal PI$, which I will
call the {\bf usual measure on $\Cal PI$}. Note that for any finite
$b\subseteq I$ and any $c\subseteq b$ we have
\Centerline{$\tilde\lambda\{a:a\cap b=c\}=\lambda\{x:x(i)=1$ for $i\in
c$, $x(i)=0$ for $i\in b\setminus c\}=2^{-\#(b)}$.}
\spheader 254Jc Of course we can apply 254G to these measures; if
$(Y,\Tau,\nu)$ is a complete probability space, a function
$\phi:Y\to\{0,1\}^I$ is \imp\ iff
\Centerline{$\nu\{y:y\in Y$, $\phi(y)\restr J=z\}=2^{-\#(J)}$}
\noindent whenever $J\subseteq I$ is finite and
$z\in\{0,1\}^J$\prooflet{; this is because the measurable cylinders in
$\{0,1\}^I$ are precisely the sets of the form $\{x:x\restr J=z\}$ where
$J\subseteq I$ is finite}.
\spheader 254Jd\dvAformerly{2{}54Xe}
Define addition on $X$ by setting
$(x+y)(i)=x(i)+_2y(i)$ for every $i\in I$, $x$, $y\in X$, where
$0+_20=1+_21=0$, $0+_21=1+_20=1$. If $y\in X$, the
map $x\mapsto x+y:X\to X$ is\cmmnt{ \imp. \prooflet{\Prf\ If $J\subseteq I$
is finite and $z\in\{0,1\}^J$, set $z'=\family{j}{J}{z(j)+_2y(j)}$; then
\Centerline{$\lambda\{x:(x+y)\restr J=z\}
=\lambda\{x:x\restr J=z'\}=2^{-\#(J)}$.}
\noindent As $J$ is arbitrary, (c) tells us that $x\mapsto x+y$ is \imp.\
\Qed} Now since
\Centerline{$(x+y)+y=x+(y+y)=x+0=x$}
\noindent for every $x$, the map $x\mapsto x+y:X\to X$ is bijective and
equal to its inverse, so it is actually} a measure space automorphism
of $(X,\lambda)$.
%\def\spheader#1#2#3#4#5{\header{#1#2#3#4#5}{\bf (#5)}}
%\def\header#1{
% \wheader{#1}{10}{4}{4}{24pt}}
\header{254Je}{\bf *(e)}\dvAnew{2016}
Just because all the factors $(X_i,\mu_i)$ are the same, we
have another class of automorphisms of $(X,\lambda)$, corresponding to
permutations of $I$. If $\pi:I\to I$ is any permutation, then
we have a corresponding function $x\mapsto x\pi:X\to X$. \cmmnt{If
$J\subseteq I$ is finite and $z\in\{0,1\}^J$, set $J'=\pi[J]$ and
$z'=z\pi^{-1}\in\{0,1\}^{J'}$; then
\Centerline{$\lambda\{x:(x\pi)\restr J=z\}=\lambda\{x:x\restr J'=z'\}
=2^{-\#(J')}=2^{-\#(J)}$.}
\noindent So $x\mapsto x\pi$ is \imp. This time, its inverse is
$x\mapsto x\pi^{-1}$, which is again \imp; so} $x\mapsto x\pi$ is a measure
space automorphism.
\leader{254K}{}\cmmnt{In the case of countably infinite $I$, we
have a very important
relationship between the usual product measure of $\{0,1\}^I$ and
Lebesgue measure on $[0,1]$.
\medskip
\noindent}{\bf Proposition} Let $\lambda$ be the usual measure on
$X=\{0,1\}^{\Bbb N}$, and let $\mu$ be Lebesgue measure on $[0,1]$;
write $\Lambda$ for the domain of $\lambda$ and $\Sigma$ for the domain
of $\mu$.
(i) For $x\in X$ set $\phi(x)=\sum_{i=0}^{\infty}2^{-i-1}x(i)$. Then
\qquad $\phi^{-1}[E]\in\Lambda$ and $\lambda\phi^{-1}[E]=\mu E$
for every $E\in\Sigma$;
\qquad $\phi[F]\in\Sigma$ and $\mu\phi[F]=\lambda F$ for
every $F\in\Lambda$.
(ii) There is a bijection $\tilde\phi:X\to[0,1]$ which is equal to
$\phi$ at all but countably many points, and any such bijection is an
isomorphism between $(X,\Lambda,\lambda)$ and $([0,1],\Sigma,\mu)$.
\proof{{\bf (a)} The first point to observe is that $\phi$ itself
is nearly a bijection. Setting
\Centerline{$H=\{x:x\in X$, $\exists\,m\in\Bbb
N$, $x(i)=x(m)\Forall i\ge m\}$,}
\Centerline{$H'=\{2^{-n}k:n\in\Bbb N$, $k\le 2^n\}$,}
\noindent then $H$ and $H'$ are countable and $\phi\restr X\setminus H$
is a bijection between $X\setminus H$ and $[0,1]\setminus H'$. (For
$t\in[0,1]\setminus H'$, $\phi^{-1}(t)$ is the binary expansion of $t$.)
Because $H$ and $H'$ are countably infinite, there is a bijection
between them; combining this with $\phi\restr X\setminus H$, we have a
bijection between $X$ and $[0,1]$ equal to $\phi$ except at countably
many points. For the rest of this proof, let $\tilde\phi$ be any such
bijection. Let $M$ be the countable set $\{x:x\in
X$, $\phi(x)\ne\tilde\phi(x)\}$, and $N$ the countable set
$\phi[M]\cup\tilde\phi[M]$; then
$\phi[A]\symmdiff\tilde\phi[A]\subseteq N$ for every $A\subseteq X$.
\medskip
{\bf (b)} To see that $\lambda\tilde\phi^{-1}[E]$ exists and is equal to
$\mu E$ for every $E\in\Sigma$, I consider successively more complex
sets $E$.
\medskip
\quad\grheada\ If $E=\{t\}$ then
$\lambda\tilde\phi^{-1}[E]=\lambda\{\tilde\phi^{-1}(t)\}$ exists and is
zero.
\medskip
\quad\grheadb\ If $E$ is of the form
$\coint{2^{-n}k,2^{-n}(k+1)}$, where $n\in\Bbb N$ and $0\le k<2^n$, then
$\phi^{-1}[E]$ differs by at most two points from a set of the form
$\{x:x(i)=z(i)\Forall i<n\}$, so $\tilde\phi^{-1}[E]$ differs from
this by a countable set, and
\Centerline{$\lambda\tilde\phi^{-1}[E]=2^{-n}=\mu E$.}
\medskip
\quad\grheadc\ If $E$ is of the form
$\coint{2^{-n}k,2^{-n}l}$, where $n\in\Bbb N$ and $0\le k<l\le 2^n$,
then
\discrcenter{468pt}
{$E=\bigcup_{k\le i<l}\coint{2^{-n}i,2^{-n}(i+1)}$, }so
\Centerline{$\lambda\tilde\phi^{-1}[E]=2^{-n}(l-k)=\mu E$.}
\medskip
\quad\grheadd\ If $E$ is of the form $\coint{t,u}$, where
$0\le t<u\le 1$, then for each $n\in\Bbb N$ set
$k_n=\lfloor 2^nt\rfloor$, the integer
part of $2^nt$, $l_n=\lfloor 2^nu\rfloor$ and
$E_n=\coint{2^{-n}(k_n+1),2^{-n}l_n}$; then $\sequencen{E_n}$ is a
non-decreasing sequence and $\bigcup_{n\in\Bbb N}E_n$ is $\ooint{t,u}$.
So (using ($\alpha$))
$$\eqalign{\lambda\tilde\phi^{-1}[E]
&=\lambda\tilde\phi^{-1}[\bigcup_{n\in\Bbb N}E_n]
=\lim_{n\to\infty}\lambda\tilde\phi^{-1}[E_n]\cr
&=\lim_{n\to\infty}\mu E_n
=\mu E.\cr}$$
\medskip
\quad\grheade\ If $E\in\Sigma$, then for any
$\epsilon>0$ there is a sequence $\sequencen{I_n}$ of
half-open subintervals of $\coint{0,1}$ such that
$E\setminus\{1\}\subseteq\bigcup_{n\in\Bbb N}I_n$ and
$\sum_{n=0}^{\infty}\mu I_n\le\mu E+\epsilon$; now
$\tilde\phi^{-1}[E]
\subseteq \{\tilde\phi^{-1}(1)\}\cup\bigcup_{n\in\Bbb N}\phi^{-1}[I_n]$,
so
\Centerline{$\lambda^*\tilde\phi^{-1}[E]
\le\lambda(\bigcup_{n\in\Bbb N}\tilde\phi^{-1}[I_n])
\le \sum_{n=0}^{\infty}\lambda\tilde\phi^{-1}[I_n]
=\sum_{n=0}^{\infty}\mu I_n
\le\mu E+\epsilon$.}
\noindent As $\epsilon$ is arbitrary,
$\lambda^*\tilde\phi^{-1}[E]\le\mu E$, and there
is a $V\in\Lambda$ such that $\tilde\phi^{-1}[E]\subseteq V$ and
$\lambda V\le\mu E$.
\medskip
\quad\grheadz\ Similarly, there is a $V'\in\Lambda$ such
that $V'\supseteq\tilde\phi^{-1}[[0,1]\setminus E]$ and
$\lambda V'\le\mu([0,1]\setminus E)$. Now $V\cup V'=X$, so
\Centerline{$\lambda(V\cap V')=\lambda V+\lambda V'-\lambda(V\cup V')
\le\mu E+(1-\mu E)-1=0$}
\noindent and
\Centerline{$\tilde\phi^{-1}[E]=(X\setminus V')
\cup(V\cap V'\cap\tilde\phi^{-1}[E])$}
\noindent belongs to $\Lambda$, with
\Centerline{$\lambda\tilde\phi^{-1}[E]\le\lambda V\le\mu E$;}
\noindent at the same time,
\Centerline{$1-\lambda\tilde\phi^{-1}[E]\le\lambda V'\le 1-\mu E$}
\noindent so $\lambda\tilde\phi^{-1}[E]=\mu E$.
\medskip
{\bf (c)} Now suppose that $C\subseteq X$ is a measurable cylinder of
the special form $\{x:x(0)=\epsilon_0,\ldots,x(n)=\epsilon_n\}$ for some
$\epsilon_0,\ldots,\epsilon_n\in\{0,1\}$. Then
$\phi[C]=[t,t+2^{-n-1}]$ where $t=\sum_{i=0}^n2^{-i-1}\epsilon_i$, so
that $\mu\phi[C]=\lambda C$. Since
$\tilde\phi[C]\symmdiff\phi[C]\subseteq N$ is countable,
$\mu\tilde\phi[C]=\lambda C$.
If $C\subseteq X$ is any measurable cylinder, then it is of the form
$\{x:x\restr J=z\}$ for some finite $J\subseteq\Bbb N$; taking $n$ so
large that $J\subseteq\{0,\ldots,n\}$, $C$ is expressible as a disjoint
union of $2^{n+1-\#(J)}$ sets of the form just considered, being just
those in which $\epsilon_i=z(i)$ for $i\in J$. Summing their measures,
we again get $\mu\tilde\phi[C]=\lambda C$. Now 254G tells us that
$\tilde\phi^{-1}:[0,1]\to X$ is \imp, that is, $\tilde\phi[W]$ is
Lebesgue measurable, with measure $\lambda W$, for every $W\in\Lambda$.
Putting this together with (b), $\tilde\phi$ must be an isomorphism
between $(X,\Lambda,\lambda)$ and $([0,1],\Sigma,\mu)$, as claimed in
(ii) of the proposition.
\medskip
{\bf (d)} As for (i), if $E\in\Sigma$ then
$\phi^{-1}[E]\symmdiff\tilde\phi^{-1}[E]\subseteq M$ is countable, so
$\lambda\phi^{-1}[E]=\lambda\tilde\phi^{-1}[E]=\mu E$. While if
$W\in\Lambda$, $\phi[F]\symmdiff\tilde\phi[W]\subseteq N$ is countable,
so $\mu\phi[W]=\mu\tilde\phi[W]=\lambda W$.
}%end of proof of 254K
\leader{254L}{\dvrocolon{Subspaces}}\cmmnt{ Just as in 251Q, we can
consider the product of
subspace measures. There is a simplification in the form of
the result because in the present context we are restricted to
probability measures.
\medskip
\noindent}{\bf Theorem} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$
be a family of probability spaces, and $(X,\Lambda,\lambda)$ their
product.
(a) For each $i\in I$, let $A_i\subseteq X_i$ be a set of full outer
measure, and write $\tilde\mu_i$ for the subspace measure on
$A_i$\cmmnt{ (214B)}.
Let $\tilde\lambda$ be the product measure on $A=\prod_{i\in I}A_i$.
Then $\tilde\lambda$ is the subspace measure on $A$ induced by
$\lambda$.
(b) $\lambda^*(\prod_{i\in I}A_i)=\prod_{i\in I}\mu_i^*A_i$ whenever
$A_i\subseteq X_i$ for every $i$.
\proof{{\bf (a)} Write $\lambda_A$ for the subspace measure on $A$
defined from $\lambda$, and $\Lambda_A$ for its domain; write
$\tilde\Lambda$ for the domain of $\tilde\lambda$.
\medskip
\quad{\bf (i)} Let $\phi:A\to X$ be the identity map. If $C\subseteq
X$ is a measurable cylinder, say $C=\prod_{i\in I}C_i$ where
$C_i\in\Sigma_i$ for each $i$, then $\phi^{-1}[C]=\prod_{i\in I}(C_i\cap
A_i)$ is a measurable cylinder in $A$, and
\Centerline{$\tilde\lambda\phi^{-1}[C]=\prod_{i\in I}\tilde\mu_i(C_i\cap
A_i)\le\prod_{i\in I}\mu_iC_i=\mu C$.}
\noindent By 254G, $\phi$ is \imp, that is, $\tilde\lambda(A\cap
W)=\lambda W$ for every $W\in\Lambda$. But this
means that $\tilde\lambda V$ is defined and equal to
$\lambda_AV=\lambda^*V$ for every $V\in\Lambda_A$, since
for any such $V$ there is a $W\in\Lambda$ such that $V=A\cap
W$ and $\lambda W=\lambda_AV$. In particular, $\lambda_AA=1$.
\medskip
\quad{\bf (ii)} Now regard $\phi$ as a function from the measure space
$(A,\Lambda_A,\lambda_A)$ to $(A,\tilde\Lambda,\tilde\lambda)$. If $D$
is a measurable
cylinder in $A$, we can express it as $\prod_{i\in I}D_i$ where every
$D_i$ belongs to the domain of $\tilde\mu_i$ and $D_i=A_i$ for all but
finitely many $i$. Now for each $i$ we can find $C_i\in\Sigma_i$ such
that $D_i=C_i\cap A_i$ and $\mu C_i=\tilde\mu_iD_i$, and we can suppose
that $C_i=X_i$ whenever $D_i=A_i$. In this case $C=\prod_{i\in
I}C_i\in\Lambda$ and
\Centerline{$\lambda C=\prod_{i\in I}\mu_iC_i=\prod_{i\in
I}\tilde\mu_iD_i=\tilde\lambda D$.}
\noindent Accordingly
\Centerline{$\lambda_A\phi^{-1}[D]=\lambda_A(A\cap C)\le\lambda C
=\tilde\lambda D$.}
\noindent By 254G again, $\phi$ is \imp\ in this manifestation, that is,
$\lambda_AV$ is defined and equal to $\tilde\lambda V$ for every
$V\in\tilde\Lambda$. Putting this together with (i), we
have $\lambda_A=\tilde\lambda$, as claimed.
\medskip
{\bf (b)} For each $i\in I$, choose a set $E_i\in\Sigma_i$ such that
$A_i\subseteq E_i$ and $\mu_iE_i=\mu^*_iA_i$; do this in such a way
that $E_i=X_i$ whenever $\mu^*_iA_i=1$. Set
$B_i=A_i\cup(X_i\setminus E_i)$, so that $\mu^*_iB_i=1$ for each $i$ (if
$F\in\Sigma_i$ and
$F\supseteq B_i$ then $F\cap E_i\supseteq A_i$, so
\Centerline{$\mu_iF=\mu_i(F\cap E_i)+\mu_i(F\setminus E_i)
=\mu_i E_i+\mu_i(X_i\setminus E_i)=1$.)}
\noindent By (a), we can identify the subspace measure $\lambda_B$ on
$B=\prod_{i\in I}B_i$ with the product of the subspace measures
$\tilde\mu_i$ on $B_i$. In particular, $\lambda^*B=\lambda_BB=1$.
Now $A_i=B_i\cap E_i$ so (writing $A=\prod_{i\in I}A_i$),
$A=B\cap\prod_{i\in I}E_i$.
If $\prod_{i\in I}\mu_i^*A_i=0$, then for every $\epsilon>0$ there is a
finite $J\subseteq I$ such that $\prod_{i\in J}\mu_i^*A_i\le\epsilon$;
consequently (using 254Fb)
\Centerline{$\lambda^*A\le\lambda\{x:x(i)\in E_i$ for every
$i\in J\}=\prod_{i\in J}\mu_iE_i\le\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\lambda^*A=0$. If
$\prod_{i\in I}\mu_i^*A_i>0$, then for every $n\in\Bbb N$ the set
$\{i:\mu^*A_i\le 1-2^{-n}\}$ must be finite, so
\Centerline{$J=\{i:\mu^*A_i<1\}=\{i:E_i\ne X_i\}$}
\noindent is countable. By 254Fb again,
applied to $\langle E_i\cap B_i\rangle_{i\in I}$ in the product
$\prod_{i\in I}B_i$,
$$\eqalign{\lambda^*(\prod_{i\in I}A_i)
&=\lambda_B(\prod_{i\in I}A_i)
=\lambda_B\{x:x\in B,\,x(i)\in E_i\cap B_i\text{ for every }i\in J\}\cr
&=\prod_{i\in J}\tilde\mu_{i}(E_i\cap B_i)
=\prod_{i\in I}\mu_i^*A_i,\cr}$$
\noindent as required.
}%end of proof of 254L
\leader{254M}{}\cmmnt{ I now turn to the basic results which make it
possible to use these product measures effectively. First, I offer a
vocabulary for
dealing with subproducts.} Let $\langle X_i\rangle_{i\in I}$ be a
family of sets, with product $X$.
\spheader 254Ma For $J\subseteq I$, write $X_J$ for
$\prod_{i\in J}X_i$. We have a canonical bijection
$x\mapsto(x\restr J,x\restr I\setminus J):
X\to X_I\times X_{I\setminus J}$. Associated with this
we have the map $x\mapsto\pi_J(x)=x\restr J:X\to X_J$. Now I will say
that a set $W\subseteq X$ is {\bf determined by coordinates in $J$} if
there is a $V\subseteq X_J$ such that $W=\pi_J^{-1}[V]$; that is, $W$
corresponds to
$V\times X_{I\setminus J}\subseteq X_J\times X_{I\setminus J}$.
\cmmnt{It is easy to see that}
$$\eqalign{W&\text{ is determined by coordinates in }J\cr
&\quad\iff x'\in W\text{ whenever }x\in W,\,x'\in X\text{ and }x'\restr
J=x\restr J\cr
&\quad\iff W=\pi_J^{-1}[\pi_J[W]].\cr}$$
\noindent It follows that if $W$ is determined by coordinates in $J$,
and $J\subseteq K\subseteq I$, $W$ is also determined by coordinates in
$K$. The family $\Cal W_J$ of subsets of $X$ determined by coordinates
in $J$ is closed under complementation and arbitrary unions and
intersections.
\prooflet{\Prf\ If $W\in\Cal W_J$, then
\Centerline{$X\setminus W=X\setminus\pi_J^{-1}[\pi_J[W]]
=\pi_J^{-1}[X_J\setminus\pi_J[W]]\in\Cal W_J$.}
\noindent If $\Cal V\subseteq\Cal W_J$, then
\Centerline{$\bigcup\Cal V
=\bigcup_{V\in\Cal V}\pi_J^{-1}[\pi_J[V]]
=\pi_J^{-1}[\bigcup_{V\in\Cal V}\pi_J[V]]
\in\Cal W_J$. \Qed}
}%end of prooflet
\spheader 254Mb \cmmnt{It follows that}
\Centerline{$\Cal W=\bigcup\{\Cal W_J:J\subseteq I$ is
countable$\}$\cmmnt{,}}
\noindent\cmmnt{the family of subsets of $X$ determined by coordinates
in some countable
set, }is a $\sigma$-algebra of subsets of $X$.
\prooflet{\Prf\ (i) $X$ and $\emptyset$ are determined by coordinates in
$\emptyset$ (recall that $X_{\emptyset}$ is a singleton, and that
$X=\pi_{\emptyset}^{-1}[X_{\emptyset}]$,
$\emptyset=\pi^{-1}_{\emptyset}[\emptyset]$). (ii) If $W\in\Cal W$,
there is a countable $J\subseteq I$ such that $W\in\Cal W_J$; now
\Centerline{$X\setminus W=\pi_J^{-1}[X_J\setminus\pi_J[W]]\in\Cal
W_J\subseteq\Cal W$.}
\noindent (iii) If $\sequencen{W_n}$
is a sequence in $\Cal W$, then for each $n\in\Bbb N$ there is a
countable $J_n\subseteq I$ such that $W\in\Cal W_{J_n}$. Now
$J=\bigcup_{n\in\Bbb N}J_n$ is a countable subset of $I$,
and every $W_n$ belongs to $\Cal W_J$, so
\Centerline{$\bigcup_{n\in\Bbb N}W_n\in\Cal W_J\subseteq\Cal W$. \Qed}
}%end of prooflet
\spheader 254Mc If $i\in I$ and $E\subseteq X_i$ then
$\{x:x\in X$, $x(i)\in E\}$ is determined by the single coordinate $i$,
so surely belongs to $\Cal W$; accordingly $\Cal W$ must include
$\Tensorhat_{i\in I}\Cal PX_i$.
\cmmnt{{\it A fortiori}, if $\Sigma_i$ is a $\sigma$-algebra of
subsets of $X_i$ for each $i$,
$\Cal W\supseteq\Tensorhat_{i\in I}\Sigma_i$; that
is, every member of $\Tensorhat_{i\in I}\Sigma_i$ is determined
by coordinates in some countable set.}
\vleader{72pt}{254N}{\bf Theorem} Let
$\langle(X_i,\Sigma_i,\mu_i)\rangle_{i\in I}$ be
a family of probability spaces and $\langle K_j\rangle_{j\in J}$ a
partition of $I$. For each $j\in J$ let $\lambda_j$ be the product
measure on $Z_j=\prod_{i\in K_j}X_i$, and write $\lambda$ for the
product measure on $X=\prod_{i\in I}X_i$. Then the natural bijection
\Centerline{$x\mapsto\phi(x)
=\langle x\restr K_j\rangle_{j\in J}:X\to\prod_{j\in J}Z_j$}
\noindent identifies $\lambda$ with the product of the family
$\langle\lambda_j\rangle_{j\in J}$.
In particular, if $K\subseteq I$ is any set, then $\lambda$ can be
identified with the c.l.d.\ product of the product measures on
$\prod_{i\in K}X_i$ and $\prod_{i\in I\setminus K}X_i$.