forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt261.tex
837 lines (622 loc) · 31.4 KB
/
mt261.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
\frfilename{mt261.tex}
\versiondate{11.12.12}
\copyrightdate{2000}
\def\dist{\mathop{\text{dist}}}
\def\chaptername{Change of variable in the integral}
\def\sectionname{Vitali's theorem in $\BbbR^r$}
\newsection{261}
\def\headlinesectionname{Vitali's theorem in $\eightBbb R^r$}
The main aim of this section is to give $r$-dimensional versions of
Vitali's theorem and Lebesgue's Density Theorem, following
ideas already presented in \S\S221 and 223. I end with a proof that
Lebesgue outer measure can be defined in terms of coverings by balls
instead of by intervals (261F).
\cmmnt{
\leader{261A}{Notation} For most of this chapter, we shall be dealing
with the geometry and
measure of Euclidean space; it will save space to fix some notation.
Throughout this section and the two following, $r\ge 1$ will be an
integer. I will use Roman letters for members of $\BbbR^r$ and
Greek letters for their coordinates, so that
$a=(\alpha_1,\ldots,\alpha_r)$, etc.; if you see any Greek letter with
a subscript you should look first for a nearby vector of which it might
be a coordinate. The measure under consideration will nearly always be
Lebesgue measure on $\Bbb R^r$; so unless otherwise indicated $\mu$
should be interpreted as
Lebesgue measure, and $\mu^*$ as Lebesgue outer measure. Similarly,
$\int\ldots dx$ will always be integration with respect to Lebesgue
measure (in a dimension determined by the context).
For $x=(\xi_1,\ldots,\xi_r)\in\BbbR^r$, write
$\|x\|=\sqrt{\xi_1^2+\ldots+\xi_r^2}$. Recall that
$\|x+y\|\le\|x\|+\|y\|$ (1A2C) and that $\|\alpha x\|=|\alpha|\|x\|$
for any vectors $x$, $y$ and scalar $\alpha$.
I will use the same notation as in \S115 for `intervals', so
that, in particular,
\Centerline{$\coint{a,b}
=\{x:\alpha_i\le\xi_i<\beta_i\Forall i\le r\}$,}
\Centerline{$\ooint{a,b}
=\{x:\alpha_i<\xi_i<\beta_i\Forall i\le r\}$,}
\Centerline{$[a,b]
=\{x:\alpha_i\le \xi_i\le \beta_i\Forall i\le r\}$}
\noindent whenever $a$, $b\in\BbbR^r$.
$\tbf{0}=(0,\ldots,0)$ will be the zero vector in $\BbbR^r$, and
$\tbf{1}$ will be $(1,\ldots,1)$. If
$x\in\BbbR^r$ and $\delta>0$, $B(x,\delta)$ will be the closed ball
with centre $x$ and radius $\delta$, that is,
$\{y:y\in\BbbR^r,\,\|y-x\|\le\delta\}$.
Note that $B(x,\delta)=x+B(\tbf{0},\delta)$; so that by the
translation-invariance of Lebesgue measure we have
\Centerline{$\mu B(x,\delta)=\mu B(\tbf{0},\delta)
=\beta_r\delta^r$,}
\noindent where
$$\eqalign{\beta_r
&=\Bover{1}{k!}\pi^k\text{ if }r=2k\text{ is even},\cr
&=\Bover{2^{2k+1}k!}{(2k+1)!}\pi^k\text{ if }r=2k+1\text{ is odd}\cr}$$
\noindent (252Q).
}%end of comment
\leader{261B}{Vitali's theorem in $\BbbR^r$} Let $A\subseteq\BbbR^r$
be any set, and $\Cal I$ a family of closed non-trivial\cmmnt{ (that
is, non-singleton, or, equivalently, non-negligible)}
balls in $\BbbR^r$ such that every point of $A$ is contained in
arbitrarily small members of $\Cal I$. Then there is a countable
disjoint set $\Cal I_0\subseteq \Cal I$ such that
$\mu(A\setminus\bigcup\Cal I_0)=0$.
\proof{{\bf (a)} To begin with (down to the end of (f) below), suppose
that $\|x\|<M$ for every $x\in A$, and
set
\Centerline{$\Cal
I'=\{I:I\in\Cal I,\,I\subseteq B(\tbf{0},M)\}$.}
\noindent If there is a finite disjoint
set $\Cal I_0\subseteq\Cal I'$
such that $A\subseteq\bigcup\Cal I_0$ (including the
possibility that $A=\Cal I_0=\emptyset$), we can stop. So let us
suppose henceforth that there is no such $\Cal I_0$.
\medskip
{\bf (b)} In this case, if $\Cal I_0$ is any finite disjoint subset of
$\Cal I'$, there is a $J\in\Cal I'$ which is disjoint from any member of
$\Cal I_0$. \Prf\ Take $x\in A\setminus\bigcup\Cal I_0$. Because
every member of $\Cal I_0$ is closed, there is a $\delta>0$ such that
$B(x,\delta)$ does not meet any member of $\Cal I_0$, and as
$\|x\|<M$ we can suppose that $B(x,\delta)\subseteq B(\tbf{0},M)$. Let
$J$ be a member of $\Cal I$, containing $x$, and of diameter at most
$\delta$; then $J\in\Cal I'$ and $J\cap\bigcup\Cal I_0=\emptyset$.\
\Qed
\medskip
{\bf (c)} We can therefore choose a sequence $\sequencen{\gamma_n}$ of
real numbers and a disjoint sequence $\sequencen{I_n}$ in $\Cal I'$
inductively, as follows. Given $\langle I_j\rangle_{j<n}$ (if $n=0$,
this is the empty sequence, with no members), with $I_j\in\Cal I'$ for
each $j<n$, and $I_j\cap I_k=\emptyset$ for $j<k<n$, set $\Cal
J_n=\{I:I\in\Cal I',\,I\cap I_j=\emptyset$ for every $j<n\}$. We know
from (b) that $\Cal J_n\ne\emptyset$. Set
\Centerline{$\gamma_n=\sup\{\diam I:I\in\Cal J_n\}$;}
\noindent then $\gamma_n\le 2M$, because every member of $\Cal J_n$ is
included in $B(\tbf{0},M)$. We can therefore find a set
$I_n\in\Cal J_n$ such that $\diam I_n\ge{1\over 2}\gamma_n$, and this
continues the induction.
\medskip
{\bf (e)} Because the $I_n$ are disjoint measurable subsets of
the bounded set $B(\tbf{0},M)$, we have
\Centerline{$\sum_{n=0}^{\infty}\mu I_n
\le\mu B(\tbf{0},M)<\infty$,}
\noindent and $\lim_{n\to\infty}\mu I_n=0$. Also
$\mu I_n\ge\beta_r(\bover14\gamma_n)^r$ for each $n$, so
$\lim_{n\to\infty}\gamma_n=0$.
Now define $I'_n$ to be the closed ball with the same centre as $I_n$
but five times the diameter, so
that it contains every point within a distance $\gamma_n$ of $I_n$. I
claim that, for any $n$,
$A\subseteq\bigcup_{j<n}{I}_j\cup\bigcup_{j\ge n}I_j'$.
\Prf\Quer\ Suppose, if possible, otherwise. Take any
$x\in A\setminus(\bigcup_{j<n}{I}_j\cup\bigcup_{j\ge n}I'_j)$. Let
$\delta>0$ be such that
\Centerline{$B(x,\delta)
\subseteq B(\tbf{0},M)\setminus\bigcup_{j<n}I_j$,}
\noindent and let
$J\in\Cal I$ be such that $x\in J\subseteq B(x,\delta)$. Then
\Centerline{$\lim_{m\to\infty}\gamma_m=0<\diam J$}
\noindent (this is where we use the hypothesis that all the balls in
$\Cal I$ are non-trivial); let $m$ be the least integer
greater than or equal to $n$ such that $\gamma_m<\diam J$. In this
case $J$ cannot belong to $\Cal J_m$, so there must be some $k<m$ such
that $J\cap I_k\ne\emptyset$, because certainly $J\in\Cal I'$. By the
choice of $\delta$, $k$ cannot be less than $n$, so $n\le k<m$, and
$\gamma_k\ge\diam J$. So the distance from $x$ to the
nearest point of $I_k$ is at most $\diam J\le \gamma_k$. But this
means
that $x\in
I'_k$; which contradicts the choice of $x$.\ \Bang\Qed
\medskip
{\bf (f)} It follows that
\Centerline{$\mu\sp*(A\setminus\bigcup_{j<n}I_j)\le\mu(\bigcup_{j\ge
n}I'_j)\le\sum_{j=n}^{\infty}\mu I'_j\le 5^r\sum_{j=n}^{\infty}\mu
I_j$.}
\noindent As
\Centerline{$\sum_{j=0}^{\infty}\mu I_j\le \mu B(\tbf{0},M)<\infty$,}
\noindent $\lim_{n\to\infty}\mu\sp*(A\setminus\bigcup_{j<n}I_j)=0$ and
\Centerline{$\mu(A\setminus\bigcup_{j\in\Bbb N}I_j)=
\mu\sp*(A\setminus\bigcup_{j\in\Bbb N}I_j)=0$.}
Thus in this case we may set $\Cal I_0=\{I_n:n\in\Bbb N\}$ to obtain
a countable disjoint family in $\Cal I$ with $\mu(A\setminus\bigcup
\Cal I_0)=0$.
\medskip
{\bf (g)} This completes the proof if $A$ is bounded. In general, set
\Centerline{$U_n=\{x:x\in \BbbR^r,\,n<\|x\|<n+1\}$,
\quad $A_n=A\cap U_n$,
\quad$\Cal J_n=\{I:I\in\Cal I,\,I\subseteq U_n\}$,}
\noindent for each $n\in\Bbb N$. Then for each $n$ we see that every
point of $A_n$ belongs to arbitrarily small members of $\Cal J_n$, so
there is a countable disjoint $\Cal J'_n\subseteq\Cal J_n$ such that
$A_n\setminus\bigcup\Cal J'_n$ is negligible. Now (because the $U_n$
are disjoint) $\Cal I_0=\bigcup_{n\in\Bbb N}\Cal J'_n$ is disjoint, and
of course $\Cal I_0$ is a countable subset of $\Cal I$; moreover,
\Centerline{$A\setminus\bigcup\Cal I_0
\subseteq(\BbbR^r\setminus\bigcup_{n\in\Bbb N}U_n)
\cup\bigcup_{n\in\Bbb N}(A_n\setminus\bigcup\Cal J'_n)$}
\noindent is negligible. (To see that $\Bbb
R^r\setminus\bigcup_{n\in\Bbb N}U_n=\{x:\|x\|\in\Bbb N\}$ is negligible,
note that for any $n\in\Bbb N$ the set
\Centerline{$\{x:\|x\|=n\}\subseteq B(\tbf{0},n)\setminus
B(\tbf{0},\delta n)$}
\noindent has measure at most $\beta_rn^r-\beta_r(\delta n)^r$ for every
$\delta\in\coint{0,1}$, so must be negligible.)
}%end of proof of 261B
\leader{261C}{}\cmmnt{ Just as in \S223, we can use the
$r$-dimensional Vitali theorem to prove theorems on the approximation of
functions by their local mean values.
\medskip
\noindent}{\bf Density Theorem in $\BbbR^r$: integral form} Let $D$ be
a subset of $\BbbR^r$, and $f$ a real-valued function which is
integrable over $D$. Then
\Centerline{$f(x)=\lim_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{D\cap B(x,\delta)}fd\mu$}
\noindent for almost every $x\in D$.
\proof{{\bf (a)} To begin with (down to the end of (b)), let us
suppose that $D=\dom f=\BbbR^r$.
Take $n\in\Bbb N$ and $q$, $q'\in\Bbb Q$ with $q<q'$, and set
\Centerline{$A=A_{nqq'}
=\{x:\|x\|\le n,\,f(x)\le q,\,
\limsup_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{B(x,\delta)}fd\mu>q'\}$.}
\noindent\Quer\ Suppose, if possible, that $\mu^*A>0$. Let
$\epsilon>0$ be such that $\epsilon(1+|q|)<(q'-q)\mu^* A$, and let
$\eta\in\ocint{0,\epsilon}$ be such that $\int_{E}|f|\le\epsilon$
whenever $\mu E\le\eta$ (225A). Let $G\supseteq A$ be an open set of
measure at most
$\mu^*A+\eta$ (134Fa). Let $\Cal I$ be the set of
non-trivial closed
balls $B\subseteq G$ such that $\bover{1}{\mu B}\int_Bfd\mu\ge q'$.
Then every point of $A$ is contained in (indeed, is the centre
of) arbitrarily small members of $\Cal I$. So there is a countable
disjoint set $\Cal I_0\subseteq\Cal I$ such that
$\mu(A\setminus\bigcup\Cal I_0)=0$, by 261B; set $H=\bigcup\Cal I_0$.
Because $\int_{I}fd\mu\ge q'\mu I$ for each $I\in\Cal I_0$, we
have
\Centerline{$\int_{H}fd\mu=\sum_{I\in\Cal I_0}\int_Ifd\mu
\ge q'\sum_{I\in\Cal I_0}\mu I=q'\mu H\ge q'\mu^* A$.}
\noindent Set
\Centerline{$E=\{x:x\in G,\,f(x)\le q\}$.}
\noindent Then $E$ is measurable, and $A\subseteq E\subseteq G$;
so
\Centerline{$\mu^* A\le\mu E\le\mu G\le\mu^* A+\eta
\le\mu^* A+\epsilon$.}
\noindent Also
\Centerline{$\mu(H\setminus E)\le\mu G-\mu E\le\eta$,}
\noindent so by
the choice of $\eta$, $\int_{H\setminus E}f\le\epsilon$ and
$$\eqalignno{\int_{H}f
&\le\epsilon+\int_{H\cap E}f
\le\epsilon+q\mu(H\cap E)\cr
&\le\epsilon+q\mu^*A+|q|(\mu(H\cap E)-\mu^* A)
\le q\mu^* A+\epsilon(1+|q|)\cr
\displaycause{because $\mu^*A=\mu^*(A\cap H)\le\mu(H\cap E)\le\mu E$}
&<q'\mu^* A
\le\int_{H}f,\cr}$$
\noindent which is impossible.\ \Bang
Thus $A_{nqq'}$ is negligible. This is true for all $q<q'$ and all
$n$, so
\Centerline{$A^*=\bigcup_{q,q'\in\Bbb Q,q<q'}
\bigcup_{n\in\Bbb N}A_{nqq'}$}
\noindent is negligible. But
\Centerline{$f(x)
\ge\limsup_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{B(x,\delta)}f$}
\noindent for every $x\in\BbbR^r\setminus A^*$, that is, for almost
all $x\in \BbbR^r$.
\medskip
{\bf (b)} Similarly, or applying this result to $-f$.
\Centerline{$f(x)
\le\liminf_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{B(x,\delta)}f$}
\noindent for almost every $x$, so
\Centerline{$f(x)
=\lim_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{B(x,\delta)}f$}
\noindent for almost every $x$.
\medskip
{\bf (c)} For the (superficially) more general case enunciated in the
theorem, let $\tilde f$ be a $\mu$-integrable function extending
$f\restr D$, defined everywhere on $\BbbR^r$, and such that
$\int_F\tilde f=\int_{D\cap F}f$ for every measurable
$F\subseteq\BbbR^r$ (applying 214Eb to $f\restr D$). Then
\Centerline{$f(x)=\tilde f(x)
=\lim_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{B(x,\delta)}\tilde f
=\lim_{\delta\downarrow 0}\Bover{1}{\mu B(x,\delta)}
\int_{D\cap B(x,\delta)}f$}
\noindent for almost every $x\in D$.
}%end of proof of 261C
\leader{261D}{Corollary} (a) If $D\subseteq\BbbR^r$ is any set, then
\Centerline{$\lim_{\delta\downarrow 0}\Bover{\mu^*(D\cap B(x,\delta))}
{\mu B(x,\delta)}=1$}
\noindent for almost every $x\in D$.
(b) If $E\subseteq\BbbR^r$ is a measurable set, then
\Centerline{$\lim_{\delta\downarrow 0}\Bover{\mu(E\cap B(x,\delta))}
{\mu B(x,\delta)}=\chi E(x)$}
\noindent for almost every $x\in \BbbR^r$.
(c) If $D\subseteq\BbbR^r$ and $f:D\to\Bbb R$ is any function, then for
almost every $x\in D$,
\Centerline{$\lim_{\delta\downarrow 0}
\Bover{\mu^*(\{y:y\in D,\,|f(y)-f(x)|\le\epsilon\}\cap
B(x,\delta))}
{\mu B(x,\delta)}=1$}
\noindent for every $\epsilon>0$.
(d) If $D\subseteq\BbbR^r$ and $f:D\to\Bbb R$ is measurable, then for
almost every $x\in D$,
\Centerline{$\lim_{\delta\downarrow 0}
\Bover{\mu^*(\{y:y\in D,\,|f(y)-f(x)|\ge\epsilon\}\cap
B(x,\delta))}
{\mu B(x,\delta)}=0$}
\noindent for every $\epsilon>0$.
\proof{{\bf (a)} Apply 261C with $f=\chi B(\tbf{0},n)$ to see that, for
any $n\in\Bbb N$,
\Centerline{$\lim_{\delta\downarrow 0}\Bover{\mu^*(D\cap B(x,\delta))}
{\mu B(x,\delta)}=1$}
\noindent for almost every $x\in D$ with $\|x\|<n$.
\medskip
{\bf (b)} Apply (a) to $E$ to see that
\Centerline{$\liminf_{\delta\downarrow 0}\Bover{\mu(E\cap
B(x,\delta))}{\mu B(x,\delta)}\ge\chi E(x)$}
\noindent for almost every $x\in\BbbR^r$, and to $E'=\BbbR^r\setminus
E$ to see that
\Centerline{$\limsup_{\delta\downarrow 0}\Bover{\mu(E\cap
B(x,\delta))}{\mu B(x,\delta)}
=1-\liminf_{\delta\downarrow 0}
\Bover{\mu(E'\cap B(x,\delta))}{\mu B(x,\delta)}
\le 1-\chi E'(x)=\chi E(x)$}
\noindent for almost every $x$.
\medskip
{\bf (c)} For $q$, $q'\in\Bbb Q$, set
\Centerline{$D_{qq'}=\{x:x\in D,\,q\le f(x)\le q'\}$,}
\Centerline{$C_{qq'}=\{x:x\in D_{qq'},\,\lim_{\delta\downarrow 0}
\Bover{\mu^*(D_{qq'}\cap B(x,\delta))}{\mu B(x,\delta)}=1\}$;}
\noindent now set
\Centerline{$C
=D\setminus\bigcup_{q,q'\in\Bbb Q}(D_{qq'}\setminus C_{qq'})$,}
\noindent so that $D\setminus C$ is negligible. If $x\in C$ and
$\epsilon>0$, then there are $q$, $q'\in\Bbb Q$ such that
$f(x)-\epsilon\le q\le f(x)\le q'\le f(x)+\epsilon$, and now
$x\in C_{qq'}$; accordingly
\Centerline{$\liminf_{\delta\downarrow 0}
\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\le\epsilon\}}
{\mu B(x,\delta)}
\ge\liminf_{\delta\downarrow 0}
\Bover{\mu^*(D_{qq'}\cap B(x,\delta))}{\mu B(x,\delta)}=1$,}
\noindent so
\Centerline{$\lim_{\delta\downarrow 0}
\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\le\epsilon\}}
{\mu B(x,\delta)}
=1$.}
\medskip
{\bf (d)} Define $C$ as in (c). We know from (a) that $\mu(D\setminus
C')=0$, where
\Centerline{$C'=\{x:x\in D,\lim_{\delta\downarrow 0}\Bover{\mu^*(D\cap
B(x,\delta))}
{\mu B(x,\delta)}=1\}$.
}
\noindent If $x\in C\cap C'$ and $\epsilon>0$, we know from (c) that
\Centerline{$\lim_{\delta\downarrow 0}
\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\le\epsilon/2\}}
{\mu B(x,\delta)}
=1$.}
\noindent But because $f$ is measurable, we have
$$\eqalign{\mu^*\{y:y\in &D\cap B(x,\delta),\,
|f(y)-f(x)|\ge\epsilon\}\cr
&+\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\le\Bover12\epsilon\}
\le\mu^*(D\cap B(x,\delta))\cr}$$
\noindent for every $\delta>0$. Accordingly
$$\eqalign{\limsup_{\delta\downarrow 0}
&\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\ge\epsilon\}}
{\mu B(x,\delta)}\cr
&\le\lim_{\delta\downarrow 0}
\Bover{\mu^*(D\cap B(x,\delta))}{\mu B(x,\delta)}
-\lim_{\delta\downarrow 0}
\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\le\epsilon/2\}}
{\mu B(x,\delta)}
=0,\cr}$$
\noindent and
\Centerline{$\lim_{\delta\downarrow 0}
\Bover{\mu^*\{y:y\in D\cap B(x,\delta),\,|f(y)-f(x)|\ge\epsilon\}}
{\mu B(x,\delta)}=0$}
\noindent for every $x\in C\cap C'$, that is, for almost every $x\in D$.
}%end of proof of 261D
\leader{261E}{Theorem} Let $f$ be a locally integrable function defined on
a conegligible subset of $\BbbR^r$. Then
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{B(x,\delta)}|f(y)-f(x)|dy=0$}
\noindent for almost every $x\in\BbbR^r$.
\proof{ (Compare 223D.)
\medskip
{\bf (a)} Fix $n\in\Bbb N$ for the moment, and set $G=\{x:\|x\|<n\}$.
For each $q\in\Bbb Q$, set $g_q(x)=|f(x)-q|$
for $x\in G\cap\dom f$; then $g_q$ is integrable over $G$, and
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}g_q=g_q(x)$}
\noindent for almost every $x\in G$, by 261C. Setting
\Centerline{$E_q=\{x:x\in G\cap\dom f,\,\lim_{\delta\downarrow 0}
\Bover1{\mu B(x,\delta)}\int_{G\cap B(x,\delta)}g_q=g_q(x)\}$,}
\noindent we have $G\setminus E_q$ negligible for every $q$, so
$G\setminus E$ is
negligible, where $E=\bigcap_{q\in\Bbb Q}E_q$. Now
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}|f(y)-f(x)|dy=0$}
\noindent for every $x\in E$. \Prf\ Take $x\in E$ and $\epsilon>0$.
Then there is a $q\in\Bbb Q$ such that $|f(x)-q|\le\epsilon$, so that
\Centerline{$|f(y)-f(x)|\le|f(y)-q|+\epsilon=g_q(y)+\epsilon$}
\noindent for every $y\in G\cap\dom f$, and
$$\eqalign{\limsup_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}|f(y)-f(x)|dy
&\le\limsup_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}g_q(y)+\epsilon\,dy\cr
&=\epsilon+g_q(x)
\le 2\epsilon.\cr}$$
\noindent As $\epsilon$ is arbitrary,
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}|f(y)-f(x)|dy=0$,}
\noindent as required.\ \Qed
\medskip
{\bf (b)} Because $G$ is open,
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{B(x,\delta)}|f(y)-f(x)|dy
=\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{G\cap B(x,\delta)}|f(y)-f(x)|dy
=0$}
\noindent for almost every $x\in G$. As $n$ is arbitrary,
\Centerline{$\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{B(x,\delta)}|f(y)-f(x)|dy=0$}
\noindent for almost every $x\in\BbbR^r$.
}%end of proof of 261E
\medskip
\noindent{\bf Remark} The set
\Centerline{$\{x:x\in\dom f,\,
\lim_{\delta\downarrow 0}\Bover1{\mu B(x,\delta)}
\int_{B(x,\delta)}|f(y)-f(x)|dy=0\}$}
\noindent is sometimes called the {\bf Lebesgue set} of $f$.
\leader{261F}{}\cmmnt{ Another very useful consequence of 261B is the
following.
\medskip
\noindent}{\bf Proposition} Let $A\subseteq\BbbR^r$ be any set, and
$\epsilon>0$. Then there is a sequence $\sequencen{B_n}$ of closed
balls in $\BbbR^r$, all of radius at most $\epsilon$, such that
$A\subseteq\bigcup_{n\in\Bbb N}B_n$ and
$\sum_{n=0}^{\infty}\mu B_n\le\mu^*A+\epsilon$. Moreover, we may
suppose that the balls in the
sequence whose centres do not lie in $A$ have measures summing to at
most $\epsilon$.
\proof{{\bf (a)} The first step is the
obvious remark that if $x\in\BbbR^r$, $\delta>0$ then the half-open
cube $I=\coint{x,x+\delta\tbf{1}}$ is a subset of the ball
$B(x,\delta\sqrt{r})$,
which has measure $\gamma_r\delta^r=\gamma_r\mu I$, where
$\gamma_r=\beta_rr^{r/2}$. It follows that if $G\subseteq\BbbR^r$ is
any open set, then $G$ can be covered by a sequence of balls of total
measure at most $\gamma_r\mu G$. \Prf\ If $G$ is empty, we can take
all the balls to be singletons. Otherwise, for each $k\in\Bbb N$, set
\Centerline{$Q_k
=\{z:z\in \Bbb Z^r,\,\coint{2^{-k}z,2^{-k}(z+\tbf{1})}\subseteq G\}$,}
\Centerline{$E_k
=\bigcup_{z\in Q_k}\coint{2^{-k}z,2^{-k}(z+\tbf{1}})$.}
\noindent Then $\sequence{k}{E_k}$ is a non-decreasing sequence of sets
with union $G$, and $E_0$ and each of the differences $E_{k+1}\setminus
E_k$ is expressible as a disjoint union of half-open cubes. Thus $G$
also is expressible as a disjoint union of a sequence $\sequencen{I_n}$
of half-open cubes. Each $I_n$ is covered by a ball $B_n$ of measure
$\gamma_r\mu I_n$; so that $G\subseteq\bigcup_{n\in\Bbb N}B_n$ and
\Centerline{$\sum_{n=0}^{\infty}\mu B_n
\le\gamma_r\sum_{n=0}^{\infty}\mu I_n=\gamma_r\mu G$. \Qed}
\medskip
{\bf (b)} It follows at once that if $\mu A=0$ then for any $\epsilon>0$
there is a sequence $\sequencen{B_n}$ of balls covering $A$ of measures
summing to at most $\epsilon$, because there is certainly an open set
including $A$ with measure at most $\epsilon/\gamma_r$.
\medskip
{\bf (c)} Now take any set $A$, and $\epsilon>0$. Let $G\supseteq A$
be an open set with $\mu G\le\mu^*A+\bover12\epsilon$. Let $\Cal I$ be
the family of non-trivial closed balls included in $G$, of radius at
most $\epsilon$ and with centres in $A$. Then every point of $A$
belongs to arbitrarily small members of $\Cal I$, so there is a
countable disjoint $\Cal I_0\subseteq\Cal I$ such that
$\mu(A\setminus\bigcup\Cal I_0)=0$. Let $\sequencen{B'_n}$ be a
sequence of balls covering $A\setminus\bigcup\Cal I_0$ with
$\sum_{n=0}^{\infty}\mu
B'_n\le\min(\bover12\epsilon,\beta_r\epsilon^r)$; these surely all have
radius at most $\epsilon$. Let $\sequencen{B_n}$ be a sequence
amalgamating $\Cal I_0$ with $\sequencen{B'_n}$; then
$A\subseteq\bigcup_{n\in\Bbb N}B_n$, every $B_n$ has radius at most
$\epsilon$ and
\Centerline{$\sum_{n=0}^{\infty}\mu B_n
=\sum_{B\in\Cal I_0}\mu B+\sum_{n=0}^{\infty}\mu B'_n
\le\mu G+\Bover12\epsilon
\le\mu A+\epsilon$,}
\noindent while the $B_n$ whose centres do not lie in $A$ must come from
the sequence $\sequencen{B'_n}$, so their measures sum to at most
$\bover12\epsilon\le\epsilon$.
}%end of proof of 261F
\cmmnt{\medskip
\noindent{\bf Remark} In fact we can (if $A$ is not empty) arrange that
the centre of {\it every} $B_n$ belongs to $A$. This is an easy
consequence of Besicovitch's Covering Lemma (see \S472 in Volume 4).
}%end of comment
\exercises{
\leader{261X}{Basic exercises (a)} Show that 261C is valid for
any locally integrable real-valued function $f$; in particular, for any
$f\in\eusm L^p(\mu_D)$ for any $p\ge 1$, writing $\mu_D$ for the
subspace measure on $D$.
%261C
\spheader 261Xb Show that 261C, 261Dc, 261Dd and 261E are valid for
complex-valued functions $f$.
%261E
\sqheader 261Xc Take three disks in the plane, each touching the other
two, so that they enclose an open region $R$ with three cusps. In $R$
let $D$ be a disk tangent to each of the three original disks, and
$R_0$, $R_1$, $R_2$ the three components of $R\setminus D$. In each
$R_j$ let $D_j$ be a disk tangent to each of the disks bounding $R_j$,
and $R_{j0}$, $R_{j1}$, $R_{j2}$ the three components of $R_j\setminus
D_j$. Continue, obtaining 27 regions at the next step, 81 regions at
the next, and so on.
Show that the total area of the residual regions converges to zero as
the process continues indefinitely. \Hint{compare with the process in
the proof of 261B.}
%261B
\leader{261Y}{Further exercises (a)}
%\spheader 261Ya
Formulate an abstract definition of
`Vitali cover', meaning a family of sets satisfying the conclusion of
261B in some sense, and corresponding generalizations of 261C-261E,
covering (at least) (b)-(d) below.
\header{261Yb}{\bf (b)} For $x\in\BbbR^r$, $k\in\Bbb N$ let $C(x,k)$ be
the half-open
cube of the form $\coint{2^{-k}z,2^{-k}(z+\tbf{1})}$, with $z\in \Bbb
Z^r$, containing $x$. Show that if $f$ is an integrable function on
$\BbbR^r$ then
\Centerline{$\lim_{k\to\infty}2^{kr}\int_{C(x,k)}f=f(x)$}
\noindent for almost every $x\in\BbbR^r$.
\spheader 261Yc Let $f$ be a real-valued function which is integrable
over $\BbbR^r$. Show that
\Centerline{$\lim_{\delta\downarrow
0}\Bover{1}{\delta^r}\int_{\coint{x,x+\delta\tbf{1}}}f=f(x)$}
\noindent for almost every $x\in\BbbR^r$.
\spheader 261Yd Give $X=\{0,1\}^{\Bbb N}$ its usual measure $\nu$
(254J). For $x\in X$, $k\in\Bbb N$ set
$C(x,k)=\{y:y\in X,\,y(i)=x(i)$ for $i<k\}$. Show that if $f$ is any
real-valued function which is integrable over $X$ then
$\lim_{k\to\infty}2^k\int_{C(x,k)}fd\nu=f(x)$,
$\lim_{k\to\infty}2^k\int_{C(x,k)}|f(y)-f(x)|\nu(dy)=0$ for almost every
$x\in X$.
\spheader 261Ye Let $f$ be a real-valued function which is integrable
over $\BbbR^r$, and $x$ a point in the Lebesgue set of $f$. Show that
for every $\epsilon>0$ there is a $\delta>0$ such that
\discrcenter{390pt}{$|f(x)-\int f(x-y)g(\|y\|)dy|\le\epsilon$ }whenever
$g:\coint{0,\infty}\to\coint{0,\infty}$ is a non-increasing function
such that $\int_{\Bbb R^r}g(\|y\|)dy=1$ and
$\int_{B(\tbf{0},\delta)}g(\|y\|)dy\ge 1-\delta$. \Hint{223Yg.}
\spheader 261Yf Let $\frak T$ be the family of those measurable sets
$G\subseteq\BbbR^r$ such that
\discrcenter{390pt}{$\lim_{\delta\downarrow 0}
\Bover{\mu(G\cap B(x,\delta))}{\mu B(x,\delta)}=1$ }for every $x\in G$.
Show that $\frak T$ is a topology on $\BbbR^r$, the {\bf density
topology} of $\BbbR^r$. Show that a function $f:\BbbR^r\to\Bbb R$ is
measurable iff it is $\frak T$-continuous at almost every point of
$\Bbb R^r$.
\spheader 261Yg A set $A\subseteq\BbbR^r$ is said to be {\bf porous} at
$x\in\BbbR^r$ if $\limsup_{y\to x}\Bover{\rho(y,A)}{\|y-x\|}>0$,
writing $\rho(y,A)=\inf_{z\in A}\|y-z\|$ (or $\infty$ if $A$ is empty).
(i) Show that if $A$ is porous at all its points then it is negligible.
(ii) Show that in the construction of 261B the residual set
$A\setminus\bigcup\Cal I_0$ will be porous at all its points.
\spheader 261Yh Let $A\subseteq\BbbR^r$ be a bounded set and $\Cal I$ a
non-empty family of non-trivial closed balls covering $A$. Show that
for any $\epsilon>0$ there are disjoint $B_0,\ldots,B_n\in\Cal I$ such
that $\mu^*A\le(3+\epsilon)^r\sum_{k=0}^n\mu B_k$.
\spheader 261Yi Let $(X,\rho)$ be a metric space and $A\subseteq X$ any
set, $x\mapsto\delta_x:A\to\coint{0,\infty}$ any bounded function.
Show that if $\gamma>3$ then there is an $A'\subseteq A$ such that (i)
$\rho(x,y)>\delta_x+\delta_y$ for all distinct $x$, $y\in A'$ (ii)
$\bigcup_{x\in A}B(x,\delta_x)
\subseteq\bigcup_{x\in A'}B(x,\gamma\delta_x)$, writing $B(x,\alpha)$
for the closed ball $\{y:\rho(y,x)\le\alpha\}$.
\spheader 261Yj(i) Let $\Cal C$ be the family of those measurable sets
$C\subseteq\BbbR^r$ such that
\discrcenter{390pt}{$\limsup_{\delta\downarrow 0}
\Bover{\mu(C\cap B(x,\delta))}{\mu B(x,\delta)}>0$ }for every $x\in C$.
Show that $\bigcup\Cal C_0\in\Cal C$ for every $\Cal C_0\subseteq\Cal C$.
\Hint{215B(iv).}
(ii) Show that any union of non-trivial closed balls in
$\BbbR^r$ is Lebesgue measurable. (Compare
415Ye in Volume 4.)
\spheader 261Yk Suppose that $A\subseteq\BbbR^r$ and that $\Cal I$ is a
family of closed subsets of $\BbbR^r$ such that
\inset{\noindent for every $x\in A$ there is an $\eta>0$ such that for
every $\epsilon>0$ there is an $I\in\Cal I$ such that $x\in I$ and
$0<\eta(\diam I)^r\le\mu I\le\epsilon$.}
\noindent Show that there is a countable disjoint set
$\Cal I_0\subseteq\Cal I$ such that
$A\setminus\bigcup\Cal I_0$ is negligible.
%261B
\spheader 261Yl Let $\frak T'$ be the family of measurable sets
$G\subseteq\BbbR^r$ such that whenever $x\in G$ and $\epsilon>0$
there is a $\delta>0$ such that $\mu(G\cap I)\ge(1-\epsilon)\mu I$ whenever
$I$ is an interval containing $x$ and included in $B(x,\delta)$.
Show that
$\frak T'$ is a topology on $\BbbR^r$ intermediate between the density
topology (261Yf) and the Euclidean topology.
}%end of exercises
\endnotes{
\Notesheader{261}
In the proofs of 261B-261E above, I have done my best to
follow the lines of the one-dimensional case; this section amounts to a
series of generalizations of the work of \S\S221 and 223.
It will be clear that
the idea of 261A/261B can be used on other shapes than balls. To make
it work in the form above, we need a family $\Cal I$ such that there is
a constant $K$ for which
\Centerline{$\mu I'\le K\mu I$}
\noindent for every $I\in \Cal I$, where we write
\Centerline{$I'=\{x:\inf_{y\in I}\|x-y\|\le\diam(I)\}$.}
\noindent Evidently this will be true for many classes $\Cal I$
determined by the shapes of the sets involved; for instance, if
$E\subseteq\BbbR^r$ is any bounded set of strictly positive measure,
the family $\Cal I=\{x+\delta E:x\in\BbbR^r,\,\delta>0\}$ will satisfy
the condition.
In 261Ya I challenge you to find an appropriate generalization of the
arguments depending on the conclusion of 261B.
Another way of using 261B is to say that because sets
can be essentially covered by {\it disjoint} sequences of balls, it
ought to be possible to use balls, rather than half-open intervals, in
the definition of Lebesgue measure on $\BbbR^r$. This is indeed so
(261F). The difficulty in using balls in the basic
definition comes right at the start, in proving that if a ball is
covered by finitely many balls then the sum of the volumes of the
covering balls is at least the volume of the covered ball. (There is
a trick, using the compactness of closed balls and the openness of open
balls, to extend such a proof to infinite covers.) Of course you could
regard this fact as `elementary', on the ground that Archimedes
would have noticed if it weren't true, but nevertheless it would be
something of a challenge to prove it, unless you were willing to wait
for a version of Fubini's theorem, as some authors do.
I have given the results in 261C-261D for arbitrary subsets $D$ of
$\Bbb R^r$ not because I have any applications in mind in which
non-measurable subsets are significant, but because I wish to make it
possible to notice when measurability matters. Of course it is
necessary to interpret the integrals $\int_Dfd\mu$ in the way laid down
in \S214. The game is given away in part (c) of the proof of 261C,
where I rely on the fact that if $f$ is integrable over $D$ then there
is an integrable $\tilde f:\BbbR^r\to\Bbb R$ such that
$\int_F\tilde f=\int_{D\cap F}f$ for every measurable
$F\subseteq\BbbR^r$. In
effect, for all the questions dealt with here, we can replace $f$, $D$
by $\tilde f$, $\BbbR^r$.
The idea of 261C is that, for almost every $x$, $f(x)$ is approximated
by its mean value on small balls $B(x,\delta)$, ignoring the missing
values on $B(x,\delta)\setminus(D\cap\dom f)$; 261E is a sharper
version of the same idea.
The formulae of 261C-261E mostly involve the expression
$\mu B(x,\delta)$. Of course this is just $\beta_r\delta^r$. But I
think that leaving it unexpanded is actually more illuminating, as well
as avoiding sub- and superscripts, since it makes it clearer what these
density theorems are really about. In \S472 of Volume 4 I will revisit
this material, showing that a surprisingly large proportion of the ideas
can be applied to arbitrary Radon measures on $\BbbR^r$, even though
Vitali's theorem (in the form stated here) is no longer valid.
}%end of notes
\discrpage