forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt262.tex
1358 lines (1023 loc) · 49.1 KB
/
mt262.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt262.tex}
\versiondate{11.8.15}
\copyrightdate{1995}
\def\dist{\mathop{\text{dist}}}
\def\chaptername{Change of variable in the integral}
\def\sectionname{Lipschitz and differentiable functions}
\newsection{262}
In preparation for the main work of this chapter in \S263, I devote a
section to two important classes of functions between Euclidean spaces.
What we really need is the essentially elementary material down to 262I,
together with the technical lemma 262M and its corollaries. Theorem
262Q is not relied on in this volume, though I believe that it makes the
patterns which will develop more natural and comprehensible.
As in \S261, $r$ (and here also $s$) will be a strictly positive integer,
and `measurable', `negligible', `integrable' will refer to Lebesgue measure
unless otherwise stated.
\leader{262A}{Lipschitz functions} Suppose that
$\phi:D\to\BbbR^s$ is a function, where $D\subseteq\BbbR^r$.
\cmmnt{We say that }$\phi$ is {\bf $\gamma$-Lipschitz}, where
$\gamma\in\coint{0,\infty}$, if
\Centerline{$\|\phi(x)-\phi(y)\|\le \gamma \|x-y\|$}
\noindent for all $x$, $y\in D$, writing
$\|x\|=\sqrt{\xi_1^2+\ldots+\xi_r^2}$ if
$x=(\xi_1,\ldots,\xi_r)\in\BbbR^r$,
$\|z\|=\sqrt{\zeta_1^2+\ldots+\zeta_s^2}$ if
$z=(\zeta_1,\ldots,\zeta_s)\in\BbbR^s$. In this case, $\gamma$ is
{\bf a Lipschitz constant for $\phi$}.
A {\bf Lipschitz function} is a function $\phi$ which is
$\gamma$-Lipschitz for some $\gamma\ge 0$.
\cmmnt{Note that in this case $\phi$ has a least
Lipschitz constant (since if $A$ is the set of Lipschitz constants for
$\phi$, and $\gamma_0=\inf A$, then $\gamma_0$ is a Lipschitz constant
for $\phi$).}
\dvAnew{2015}Evidently a Lipschitz function is (uniformly) continuous.
\leader{262B}{}\cmmnt{ We need the following easy facts.
\medskip
\noindent}{\bf Lemma} Let $D\subseteq\BbbR^r$ be a set and
$\phi:D\to\BbbR^s$ a function.
(a) $\phi$ is Lipschitz iff $\phi_i:D\to\Bbb R$
is Lipschitz for every $i$, writing
$\phi(x)=(\phi_1(x),\ldots,\phi_s(x))$ for every $x\in
D=\dom\phi\subseteq\BbbR^r$.
(b) In this case, there is a Lipschitz function
$\tilde\phi:\BbbR^r\to\BbbR^s$ extending $\phi$.
(c) If $r=s=1$ and $D=[a,b]$ is an interval,
then $\phi$ is Lipschitz iff it is absolutely continuous and has a
bounded derivative.
\proof{{\bf (a)} For any $x$, $y\in D$ and $i\le s$,
\Centerline{$|\phi_i(x)-\phi_i(y)|\le\|\phi(x)-\phi(y)\|
\le\sqrt{s}\sup_{j\le s}|\phi_j(x)-\phi_j(y)|$,}
\noindent so any Lipschitz constant for $\phi$ will be a Lipschitz
constant for every $\phi_i$, and if $\gamma_j$ is a Lipschitz constant
for $\phi_j$ for each $j$, then $\sqrt{s}\sup_{j\le s}\gamma_j$ will be
a Lipschitz constant for $\phi$.
\medskip
{\bf (b)} By (a), it is
enough to consider the case $s=1$, for if every $\phi_i$ has a Lipschitz
extension $\tilde\phi_i$, we can set
$\tilde\phi(x)=(\tilde\phi_1(x),\ldots,\tilde\phi_s(x))$ for every $x$
to obtain a Lipschitz extension of $\phi$.
Taking $s=1$, then, note that the case $D=\emptyset$ is trivial; so
suppose that $D\ne\emptyset$. Let $\gamma$ be a Lipschitz constant for
$\phi$, and write
\Centerline{$\tilde\phi(z)=\sup_{y\in D}\phi(y)-\gamma\|y-z\|$}
\noindent for every $z\in\BbbR^r$. If $x\in D$, then, for any
$z\in\BbbR^r$ and $y\in D$,
\Centerline{$\phi(y)-\gamma\|y-z\|
\le\phi(x)+\gamma\|y-x\|-\gamma\|y-z\|
\le\phi(x)+\gamma\|z-x\|$,}
\noindent so that $\tilde\phi(z)\le\phi(x)+\gamma\|z-x\|$; this shows,
in particular, that $\tilde\phi(z)<\infty$. Also, if $z\in D$, we must
have
\Centerline{$\phi(z)-\gamma\|z-z\|\le\tilde\phi(z)
\le\phi(z)+\gamma\|z-z\|$,}
\noindent so that $\tilde\phi$ extends $\phi$. Finally, if $w$,
$z\in\BbbR^r$ and $y\in D$,
\Centerline{$\phi(y)-\gamma\|y-w\|
\le\phi(y)-\gamma\|y-z\|+\gamma\|w-z\|
\le\tilde\phi(z)+\gamma\|w-z\|$;}
\noindent and taking the supremum over $y\in D$,
\Centerline{$\tilde\phi(w)\le\tilde\phi(z)+\gamma\|w-z\|$.}
\noindent As $w$ and $z$ are arbitrary, $\tilde\phi$ is Lipschitz.
\medskip
{\bf (c)(i)} Suppose that $\phi$ is $\gamma$-Lipschitz. If $\epsilon>0$
and
$a\le a_1\le b_1\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=1}^nb_i-a_i\le\epsilon/(1+\gamma)$, then
\Centerline{$\sum_{i=1}^n|\phi(b_i)-\phi(a_i)|
\le\sum_{i=1}^n\gamma|b_i-a_i|
\le\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\phi$ is absolutely continuous.
If $x\in[a,b]$ and $\phi'(x)$ is defined, then
\Centerline{$|\phi'(x)|
=\lim_{y\to x}\Bover{|\phi(y)-\phi(x)|}{|y-x|}\le\gamma$,}
\noindent so $\phi'$ is bounded.
\medskip
\quad{\bf (ii)} Now suppose that $\phi$ is absolutely continuous and
that $|\phi'(x)|\le\gamma$ for every $x\in\dom\phi'$, where
$\gamma\ge 0$. Then whenever $a\le x\le y\le b$,
\Centerline{$|\phi(y)-\phi(x)|=|\int_x^y\phi'|\le\int_x^y|\phi'|
\le\gamma(y-x)$}
\noindent (using 225E for the first equality). As $x$ and $y$ are
arbitrary, $\phi$ is $\gamma$-Lipschitz.
}%end of proof of 262B
\cmmnt{
\leader{262C}{Remark} The argument for (b) above shows that if
$\phi:D\to\Bbb R$ is a Lipschitz function, where
$D\subseteq\Bbb R^r$, then $\phi$ has an extension to $\BbbR^r$ with the same Lipschitz
constants. In fact it is the case that if $\phi:D\to\BbbR^s$ is a
Lipschitz function, then $\phi$ has
an extension to $\tilde\phi:\BbbR^r\to\BbbR^s$ with the same Lipschitz
constants; this is `Kirszbraun's theorem' ({\smc Kirszbraun 34}, or
{\smc Federer 69}, 2.10.43).
}%end of comment
\leader{262D}{Proposition} If $\phi:D\to\BbbR^r$ is a $\gamma$-Lipschitz
function, where $D\subseteq\BbbR^r$, then
$\mu^*\phi[A]\le\gamma^r\mu^*A$ for every $A\subseteq D$, where $\mu$ is
Lebesgue measure on $\BbbR^r$. In particular,
$\phi[D\cap A]$ is negligible for every negligible set $A\subseteq\BbbR^r$.
\proof{ Let $\epsilon>0$. By 261F, there is a sequence
$\sequencen{B_n}=\sequencen{B(x_n,\delta_n)}$ of closed balls in
$\Bbb R^r$, covering $A$, such that
$\sum_{n=0}^{\infty}\mu B_n\le\mu^* A+\epsilon$ and
$\sum_{n\in\Bbb N\setminus K}\mu B_n\le\epsilon$, where
$K=\{n:n\in\Bbb N,\,x_n\in A\}$. Set
\Centerline{$L=\{n:n\in\Bbb N\setminus K,\,B_n\cap D\ne\emptyset\}$,}
\noindent and for $n\in L$ choose $y_n\in D\cap B_n$. Now set
$$\eqalign{B'_n
&=B(\phi(x_n),\gamma\delta_n)\text{ if }n\in K,\cr
&=B(\phi(y_n),2\gamma\delta_n)\text{ if }n\in L,\cr
&=\emptyset\text{ if }n\in\Bbb N\setminus(K\cup L).\cr}$$
\noindent Then $\phi[B_n\cap D]\subseteq B'_n$ for every $n$, so
$\phi[D\cap A]\subseteq\bigcup_{n\in\Bbb N}B'_n$, and
$$\eqalign{\mu^*\phi[A\cap D]
&\le\sum_{n=0}^{\infty}\mu B'_n
=\gamma^r\sum_{n\in K}\mu B_n+2^r\gamma^r\sum_{n\in L}\mu B_n\cr
&\le\gamma^r(\mu^*A+\epsilon)+2^r\gamma^r\epsilon.\cr}$$
\noindent As $\epsilon$ is arbitrary, $\mu^*\phi[A\cap
D]\le\gamma^r\mu^*A$, as claimed.
}%end of proof of 262D
\vleader{72pt}{262E}{Corollary} Let $\phi:D\to\BbbR^r$ be an injective
Lipschitz function, where $D\subseteq\BbbR^r$, and $f$ a measurable
function from a subset of $\BbbR^r$ to $\Bbb R$.
(a) If $\phi^{-1}$ is defined almost everywhere in a subset $H$ of
$\BbbR^r$ and $f$ is defined almost everywhere in $\BbbR^r$, then
$f\phi^{-1}$ is defined almost everywhere in $H$.
(b) If $E\subseteq D$ is Lebesgue measurable then $\phi[E]$ is
measurable.
(c) If $D$ is measurable then $f\phi^{-1}$ is measurable.
\proof{ Set
\Centerline{$C=\dom(f\phi^{-1})
=\{y:y\in\phi[D],\,\phi^{-1}(y)\in\dom f\}=\phi[D\cap\dom f]$.}
\medskip
{\bf (a)} Because $f$ is defined almost everywhere,
$\phi[D\setminus\dom f]$
is negligible. But now
\Centerline{$C=\phi[D]\setminus \phi[D\setminus\dom f]
=\dom\phi^{-1}\setminus\phi[D\setminus\dom f]$,}
\noindent so
\Centerline{$H\setminus C
\subseteq(H\setminus\dom\phi^{-1})\cup\phi[D\setminus\dom f]$}
\noindent is negligible.
\medskip
{\bf (b)} Now suppose that $E\subseteq D$ and that $E$ is measurable.
Let $\sequencen{F_n}$ be a sequence of closed bounded
subsets of $E$ such that $\mu(E\setminus\bigcup_{n\in\Bbb N}F_n)=0$
(134Fb). Because $\phi$ is Lipschitz, it is continuous, so
$\phi[F_n]$ is compact, therefore closed, therefore measurable for every
$n$ (2A2E, 115G); also $\phi[E\setminus\bigcup_{n\in\Bbb N}F_n]$
is negligible, by 262D, therefore measurable. So
\Centerline{$\phi[E]
=\phi[E\setminus\bigcup_{n\in\Bbb N}F_n]
\cup\bigcup_{n\in\Bbb N}\phi[F_n]
$}
\noindent is measurable.
\medskip
{\bf (c)} For any $a\in\Bbb R$, take a measurable set
$E\subseteq\BbbR^r$
such that $\{x:f(x)\ge a\}=E\cap\dom f$. Then
\Centerline{$\{y:y\in C,\,f\phi^{-1}(y)\ge a\}
=C\cap\phi[D\cap E]$.}
\noindent But $\phi[D\cap E]$ is measurable, by (b), so
$\{y:f\phi^{-1}(y)\ge a\}$ is relatively measurable in $C$. As $a$ is
arbitrary, $f\phi^{-1}$ is measurable.
}%end of proof of 262E
\leader{262F}{\dvrocolon{Differentiability}}\cmmnt{ I come now to the
class of functions whose properties will take up most of the rest of the
chapter.
\medskip
\noindent}{\bf Definitions} Suppose that $\phi$ is a
function from a subset $D=\dom\phi$ of $\BbbR^r$ to $\BbbR^s$.
\spheader 262Fa $\phi$ is {\bf differentiable} at $x\in D$ if there is a
real $s\times r$ matrix $T$ such that
\Centerline{$\lim_{y\to x}
\Bover{\|\phi(y)-\phi(x)-T(y-x)\|}{\|y-x\|}=0$;}
\noindent in this case we may write $T=\phi'(x)$.
\spheader 262Fb I will say that $\phi$ is {\bf differentiable relative to
its domain} at
$x$, and that $T$ is {\bf a} derivative of $\phi$ at $x$, if
$x\in D$ and for every $\epsilon>0$ there is a $\delta>0$ such that
$\|\phi(y)-\phi(x)-T(y-x)\|\le\epsilon\|y-x\|$ for every
$y\in B(x,\delta)\cap D$.
\cmmnt{
\vleader{72pt}{262G}{Remarks (a)} The standard definition in 262Fa,
involving an all-sided limit
`$\lim_{y\to x}$', implicitly requires $\phi$ to be defined on some
non-trivial ball centered on $x$, so that we can calculate
$\phi(y)-\phi(x)-T(y-x)$ for all $y$ sufficiently near $x$. It has the
advantage that the derivative $T=\phi'(x)$ is uniquely defined (because
if $\lim_{z\to \tbf{0}}\Bover{\|T_1z-T_2z\|}{\|z\|}=0$ then
\Centerline{$\Bover{\|(T_1-T_2)z\|}{\|z\|}=\lim_{\alpha\to
0}\Bover{\|T_1(\alpha
z)-T_2(\alpha z)\|}{\|\alpha z\|}=0$}
\noindent for every non-zero $z$, so $T_1-T_2$ must be the zero matrix).
For our purposes here, there is some advantage in relaxing this slightly
to the form
in 262Fb, so that we do not need to pay special attention to the
boundary of $\dom\phi$. In particular we find that if
$T$ is a derivative of $\phi:D\to\BbbR^s$
relative to its domain at $x$, and $x\in D'\subseteq D$, then
$T$ is a derivative of $\phi\restr D'$,
relative to its domain, at $x$.
\header{262Gb}{\bf (b)} If you have not seen this concept of
`differentiability'
before, but have some familiarity with partial differentiation, it is
necessary to emphasize that the concept of `differentiable' function
(at least in the strict sense demanded by 262Fa) is strictly
stronger than the concept of `partially differentiable' function.
For purposes of computation, the most useful method of finding true
derivatives is through 262Id below. For a simple
example of a function with a full set of partial derivatives, which is
not everywhere differentiable, consider $\phi:\BbbR^2\to\Bbb R$ defined
by
$$\eqalign{\phi(\xi_1,\xi_2)
&={{\xi_1\xi_2}\over{\xi_1^2+\xi_2^2}}
\text{ if }\xi_1^2+\xi_2^2\ne 0,\cr
&=0\text{ if }\xi_1=\xi_2=0.\cr}$$
\noindent Then $\phi$ is not even continuous at $\tbf{0}$, although
both partial derivatives $\pd{\phi}{\xi_j}$ are defined everywhere.
\header{262Gc}{\bf (c)} In the definition above, I speak of a derivative
as being a
matrix. Properly speaking, the derivative of a function defined on a
subset of $\BbbR^r$ and taking values in $\BbbR^s$ should be thought
of as a bounded linear operator from $\BbbR^r$ to $\BbbR^s$; the
formulation in terms of matrices is acceptable just because there is a
natural one-to-one correspondence between $s\times r$ real matrices and
linear operators from $\BbbR^r$ to $\BbbR^s$, and all these linear
operators are
bounded. I use the `matrix' description because it makes certain
calculations more direct; in particular, the relationship between
$\phi'$ and the partial derivatives of $\phi$ (262Ic), and the notion of
the determinant $\det\phi'(x)$, used throughout \S\S263 and 265.
}%end of comment
\leader{262H}{The norm of a matrix} Some of the calculations below will
rely on the notion of `norm' of a matrix. The one I
will use\cmmnt{ (in fact, for our purposes here, any norm would do)}
is the `operator norm', defined by saying
\Centerline{$\|T\|=\sup\{\|Tx\|:x\in\BbbR^r,\,\|x\|\le 1\}$}
\noindent for any $s\times r$ matrix $T$. \cmmnt{For the basic facts
concerning these norms, see 2A4F-2A4G. The following will also be
useful.}
\header{262Ha}{\bf (a)} If\cmmnt{ all the coefficients of $T$ are
small, so is $\|T\|$; in fact,
if} $T=\langle\tau_{ij}\rangle_{i\le s,j\le r}$\cmmnt{, and
$\|x\|\le 1$,} then
\cmmnt{$|\xi_j|\le 1$ for each $j$, so
\Centerline{$\|Tx\|
=\bigl(\sum_{i=1}^s(\sum_{j=1}^r\tau_{ij}\xi_j)^2\bigr)^{1/2}
\le \bigl(\sum_{i=1}^s(\sum_{j=1}^r|\tau_{ij}|)^2\bigr)^{1/2}
\le r\sqrt{s}\max_{i\le s,j\le r}|\tau_{ij}|$,}
\noindent and} $\|T\|\le r\sqrt{s}\max_{i\le s,j\le r}|\tau_{ij}|$.
\cmmnt{(This is a singularly crude inequality. A better one is in
262Yb. But it tells us, in particular, that $\|T\|$ is always finite.)
}
\header{262Hb}{\bf (b)}\dvro{ $|\tau_{ij}|\le\|T\|$ for all $i$, $j$.}
{ If $\|T\|$ is small, so are all the coefficients of $T$; in fact,
writing $e_j$ for the $j$th unit vector of $\BbbR^r$, then the $i$th
coordinate of $Te_j$ is $\tau_{ij}$, so
$|\tau_{ij}|\le\|Te_j\|\le\|T\|$.}
\leader{262I}{Lemma} Let $\phi:D\to\BbbR^s$ be a function, where
$D\subseteq\BbbR^r$. For $i\le s$ let $\phi_i:D\to\Bbb R$ be its $i$th
coordinate, so that $\phi(x)=(\phi_1(x),\ldots,\phi_s(x))$ for $x\in D$.
(a) If $\phi$ is differentiable relative to its domain
at $x\in D$, then $\phi$ is continuous at $x$.
(b) If $x\in D$, then $\phi$ is differentiable relative to its domain at
$x$ iff each $\phi_i$ is differentiable relative to its domain at $x$.
(c) If $\phi$ is differentiable at $x\in D$, then all the partial
derivatives $\pd{\phi_i}{\xi_j}$ of $\phi$ are defined at $x$, and the
derivative of $\phi$ at $x$ is the matrix
$\langle\pd{\phi_i}{\xi_j}(x)\rangle_{i\le s,j\le r}$.
(d) If all the partial derivatives $\pd{\phi_i}{\xi_j}$, for $i\le s$
and $j\le r$, are defined in a neighbourhood of $x\in D$ and are continuous at $x$, then $\phi$ is differentiable at $x$.
\proof{{\bf (a)} Let $T$ be a derivative of $\phi$ at $x$. Applying
the definition 262Fb with
$\epsilon=1$, we see that there is a $\delta>0$ such that
\Centerline{$\|\phi(y)-\phi(x)-T(y-x)\|\le\|y-x\|$}
\noindent whenever $y\in D$ and $\|y-x\|\le\delta$. Now
\Centerline{$\|\phi(y)-\phi(x)\|\le\|T(y-x)\|+\|y-x\|
\le(1+\|T\|)\|y-x\|$}
\noindent whenever $y\in D$ and $\|y-x\|\le\delta$, so $\phi$ is
continuous at $x$.
\medskip
{\bf (b)(i)} If $\phi$ is differentiable relative to its domain at
$x\in D$, let $T$ be a
derivative of $\phi$ at $x$. For $i\le s$ let $T_i$ be
the $1\times r$ matrix consisting of the $i$th row of $T$. Let
$\epsilon>0$. Then we have a $\delta>0$ such that
$$\eqalign{|\phi_i(y)-\phi_i(x)-T_i(y-x)|
&\le\|\phi(y)-\phi(x)-T(y-x)\|\cr
&\le\epsilon\|y-x\|\cr}$$
\noindent whenever $y\in D$ and $\|y-x\|\le\delta$, so that $T_i$ is a
derivative of $\phi_i$ at $x$.
\medskip
\quad{\bf (ii)} If each $\phi_i$ is differentiable relative to its
domain at
$x$, with corresponding derivatives $T_i$, let $T$ be the $s\times r$
matrix with rows $T_1,\ldots,T_s$. Given $\epsilon>0$, there is for
each $i\le s$ a $\delta_i>0$ such that
\Centerline{$|\phi_i(y)-\phi_i(x)-T_iy|\le\epsilon\|y-x\|$ whenever
$y\in D$, $\|y-x\|\le\delta_i$;}
\noindent set $\delta=\min_{i\le s}\delta_i>0$; then if $y\in D$ and
$\|y-x\|\le\delta$, we shall have
\Centerline{$\|\phi(y)-\phi(x)-T(y-x)\|^2
=\sum_{i=1}^s|\phi_i(y)-\phi_i(x)-T_i(y-x)|^2
\le s\epsilon^2\|y-x\|^2$,}
\noindent so that
\Centerline{$\|\phi(y)-\phi(x)-T(y-x)\|
\le\epsilon\sqrt{s}\|y-x\|$.}
\noindent As $\epsilon$ is arbitrary, $T$ is a derivative of $\phi$ at
$x$.
\medskip
{\bf (c)} Set $T=\phi'(x)$. We have
\Centerline{$\lim_{y\to x}\Bover{\|\phi(y)-\phi(x)-T(y-x)\|}{\|y-x\|}
=0$;}
\noindent fix $j\le r$, and consider $y=x+\eta e_j$, where
$e_j=(0,\ldots,0,1,0,\ldots,0)$ is the $j$th unit vector in $\BbbR^r$.
Then we must have
\Centerline{$\lim_{\eta\to 0}\Bover{\|\phi(x+\eta e_j)-\phi(x)-\eta
T(e_j)\|}{|\eta|}
=0$.}
\noindent Looking at the $i$th coordinate of
$\phi(x+\eta e_j)-\phi(x)-\eta T(e_j)$, we have
\Centerline{$|\phi_i(x+\eta e_j)-\phi_i(x)-\tau_{ij}\eta|
\le\|\phi(x+\eta e_j)-\phi(x)-\eta T(e_j)\|$,}
\noindent where $\tau_{ij}$ is the
$(i,j)$th coefficient of $T$; so that
\Centerline{$\lim_{\eta\to 0}
\Bover{|\phi_i(x+\eta e_j)-\phi_i(x)-\tau_{ij}\eta|}{|\eta|}
=0$.}
\noindent But this just says that the partial derivative
$\pd{\phi_i}{\xi_j}(x)$ exists and is equal to $\tau_{ij}$, as claimed.
\medskip
{\bf (d)} Now suppose that the partial derivatives $\pd{\phi_i}{\xi_j}$
are defined near $x$ and continuous at $x$. Let $\epsilon>0$. Let
$\delta>0$ be such that
\Centerline{$|\pd{\phi_i}{\xi_j}(y)-\tau_{ij}|\le\epsilon$}
\noindent whenever $\|y-x\|\le\delta$, writing
$\tau_{ij}=\pd{\phi_i}{\xi_j}(x)$. Now suppose that
$\|y-x\|\le\delta$. Set
\Centerline{$y=(\eta_1,\ldots,\eta_r)$,
\quad$x=(\xi_1,\ldots,\xi_r)$,}
\Centerline{$y_j=(\eta_1,\ldots,\eta_j,\xi_{j+1},\ldots,\xi_r)$ for
$0\le
j\le r$,}
\noindent so that $y_0=x$, $y_r=y$ and the line segment between
$y_{j-1}$ and $y_{j}$ lies wholly within $\delta$ of $x$ whenever
$1\le j\le r$, since if $z=(\zeta_1,\ldots,\zeta_r)$
lies on this segment then $\zeta_i$ lies
between $\xi_i$ and $\eta_i$ for every $i$. By the ordinary mean value
theorem for differentiable real functions, applied to the function
\Centerline{$t\mapsto
\phi_i(\eta_1,\ldots,\eta_{j-1},t,\xi_{j+1},\ldots,\xi_r)$,}
\noindent there is for each $i\le s$, $j\le r$ a point $z_{ij}$ on the
line segment between $y_{j-1}$ and $y_j$ such that
\Centerline{$\phi_i(y_j)-\phi_i(y_{j-1})
=(\eta_j-\xi_j)\pd{\phi_i}{\xi_j}(z_{ij})$.}
\noindent But
\Centerline{$|\pd{\phi_i}{\xi_j}(z_{ij})-\tau_{ij}|\le\epsilon$,}
\noindent so
\Centerline{$|\phi_i(y_j)-\phi_i(y_{j-1})
-\tau_{ij}(\eta_j-\xi_j)|\le\epsilon|\eta_j-\xi_j|\le\epsilon\|y-x\|$.}
\noindent Summing over $j$,
\Centerline{$|\phi_i(y)-\phi_i(x)-\sum_{j=1}^r\tau_{ij}(\eta_j-\xi_j)|
\le r\epsilon\|y-x\|$}
\noindent for each $i$. Summing the squares and taking the square
root,
\Centerline{$\|\phi(y)-\phi(x)-T(y-x)\|\le \epsilon r\sqrt{s}\|y-x\|$,}
\noindent where $T=\langle\tau_{ij}\rangle_{i\le s,j\le r}$. And this
is true
whenever $\|y-x\|\le\delta$. As $\epsilon$ is arbitrary, $\phi'(x)=T$
is defined.
}%end of proof of 262I
\cmmnt{
\leader{262J}{Remark} I am not sure if I ought to apologize for the
notation $\pd{}{\xi_j}$. In such formulae as
$(\eta_j-\xi_j)\pd{\phi_i}{\xi_j}(z_{ij})$ above, the two appearances of
$\xi_j$ clash most violently. But I do not think that any person of
good will is likely to be misled, provided that the labels $\xi_j$ (or
whatever symbols are used to represent the variables involved) are
adequately described when the domain of $\phi$ is first introduced (and
always remembering that in partial differentiation, we are not only
moving one variable -- a $\xi_j$ in the present context -- but holding
fixed some further list of variables, not listed in the notation). I
believe that the traditional notation $\pd{}{\xi_j}$ has survived for
solid reasons, and I should like to offer a welcome to those who are
more comfortable with it than with any of the many alternatives which
have been proposed, but have never taken root.
}%end of comment
\cmmnt{
\leader{262K}{The Cantor function revisited} It is salutary to
re-examine the examples of 134H-134I in the light of the present
considerations. Let $f:[0,1]\to[0,1]$ be the Cantor function (134H)
and set $g(x)=\bover12(x+f(x))$ for $x\in [0,1]$. Then
$g:[0,1]\to[0,1]$ is a homeomorphism (134I); set
$\phi=g^{-1}:[0,1]\to[0,1]$. We see that if $0\le x\le y\le 1$ then
$g(y)-g(x)\ge\bover12(y-x)$; equivalently, $\phi(y)-\phi(x)\le 2(y-x)$
whenever $0\le x\le y\le 1$, so that $\phi$ is a Lipschitz function,
therefore absolutely continuous (262Bc). If
$D=\{x:\phi'(x)$ is defined$\}$, then
$[0,1]\setminus D$ is negligible (225Cb), so
$[0,1]\setminus\phi[D]=\phi[\,[0,1]\setminus D]$ is negligible (262Da).
I noted in 134I that there is a measurable function $h:[0,1]\to\Bbb R$
such that the composition $h\phi$ is not measurable; now
$h(\phi\restr D)=(h\phi)\restr D$ cannot be measurable, even though
$\phi\restr D$ is differentiable.
}%end of comment
\leader{262L}{}\cmmnt{ It will be convenient to be able to call on the
following straightforward result.
\medskip
\noindent}{\bf Lemma} Suppose that $D\subseteq\BbbR^r$ and $x\in\BbbR^r$
are such that
$\lim_{\delta\downarrow 0}
\Bover{\mu^*(D\cap B(x,\delta))}{\mu B(x,\delta)}=1$. Then
$\lim_{z\to\tbf{0}}\Bover{\rho(x+z,D)}{\|z\|}=0$, where
$\rho(x+z,D)=\inf_{y\in D}\|x+z-y\|$.
\proof{ Let $\epsilon>0$. Let $\delta_0>0$ be such that
\Centerline{$\mu^*(D\cap B(x,\delta))
>(1-(\Bover{\epsilon}{1+\epsilon})^r)\mu B(x,\delta)$}
\noindent whenever $0<\delta\le\delta_0$. Take any $z$ such that
$0<\|z\|\le\delta_0/(1+\epsilon)$. \Quer\ Suppose, if possible, that
$\rho(x+z,D)>\epsilon\|z\|$. Then $B(x+z,\epsilon\|z\|)\subseteq
B(x,(1+\epsilon)\|z\|)\setminus D$, so
$$\eqalign{\mu^*(D\cap B(x,(1+\epsilon)\|z\|))
&\le\mu B(x,(1+\epsilon)\|z\|)-\mu B(x+z,\epsilon\|z\|)\cr
&=(1-(\Bover{\epsilon}{1+\epsilon})^r)\mu B(x,(1+\epsilon)\|z\|),\cr}$$
\noindent which is impossible, as $(1+\epsilon)\|z\|\le\delta_0$.\
\BanG\ Thus $\rho(x+z,D)\le\epsilon\|z\|$. As $\epsilon$ is
arbitrary, this proves the result.
}%end of proof of 262L
\cmmnt{\medskip
\noindent{\bf Remark} There is a word for this; see 261Yg.}
\leader{262M}{}\cmmnt{ I come now to the first result connecting
Lipschitz functions with differentiable functions. I approach it
through a substantial lemma which will be the foundation of \S263.
\medskip
\noindent}{\bf Lemma} Let $\phi$ be a
function from a subset $D$ of $\BbbR^r$ to $\BbbR^s$ which is
differentiable at
each point of its domain. For each $x\in D$ let $T(x)$ be a derivative
of $\phi$. Let $M_{sr}$ be the set of $s\times r$ matrices and
$\zeta:A\to\ooint{0,\infty}$ a strictly positive function, where
$A\subseteq M_{sr}$ is a non-empty set containing $T(x)$ for every
$x\in D$. Then we
can find sequences $\sequencen{D_n}$, $\sequencen{T_n}$ such that
(i) $\sequencen{D_n}$ is a partition of $D$ into sets which are
relatively measurable in $D$\cmmnt{, that is, are intersections of $D$ with measurable subsets of $\BbbR^r$};
(ii) $T_n\in A$ for every $n$;
(iii) $\|\phi(x)-\phi(y)-T_n(x-y)\|\le\zeta(T_n)\|x-y\|$ for every
$n\in\Bbb N$ and $x$, $y\in D_n$;
(iv) $\|T(x)-T_n\|\le\zeta(T_n)$ for every $x\in D_n$.
\proof{{\bf (a)} The first step is to note that there is a sequence
$\sequencen{S_n}$ in $A$ such that
\Centerline{$A
\subseteq\bigcup_{n\in\Bbb N}\{T:T\in M_{sr},\,\|T-S_n\|<\zeta(S_n)\}$.}
\noindent\Prf\ (Of course this is a standard result about
separable metric
spaces.) Write $Q$ for the set of matrices in $M_{sr}$ with rational
coefficients; then there is a natural bijection between $Q$ and
$\Bbb Q^{sr}$, so $Q$ and $Q\times\Bbb N$ are countable. Enumerate
$Q\times\Bbb N$ as $\sequencen{(R_n,k_n)}$. For each $n\in\Bbb N$,
choose $S_n\in A$ by the rule
\quad --- if there is an $S\in A$ such that $\{T:\|T-R_n\|\le
2^{-k_n}\}\subseteq\{T:\|T-S\|<\zeta(S)\}$, take such an $S$ for $S_n$;
\quad --- otherwise, take $S_n$ to be any member of $A$.
\noindent I claim that this works. For let $S\in A$. Then
$\zeta(S)>0$; take $k\in\Bbb N$ such that $2^{-k}<\zeta(S)$. Take
$R^*\in Q$ such that $\|R^*-S\|<\min(\zeta(S)-2^{-k},2^{-k})$; this
is possible because $\|R-S\|$ will be small whenever all the
coefficients
of $R$ are close enough to the corresponding coefficients of $S$
(262Ha), and we can find rational numbers to achieve this. Let
$n\in\Bbb N$ be such that $R^*=R_n$ and $k=k_n$. Then
\Centerline{$\{T:\|T-R_n\|\le 2^{-k_n}\}
\subseteq\{T:\|T-S\|<\zeta(S)\}$}
\noindent (because $\|T-S\|\le\|T-R_n\|+\|R_n-S\|$), so we must have
chosen $S_n$ by the first part of the rule above, and
\Centerline{$S\in\{T:\|T-R_n\|\le 2^{-k_n}\}
\subseteq\{T:\|T-S_n\|<\zeta(S_n)\}$.}
\noindent As $S$ is arbitrary, this proves the result.\ \Qed
\medskip
{\bf (b)} Enumerate $\Bbb Q^r\times\Bbb Q^r\times\Bbb N$ as
$\sequencen{(q_n,q'_n,m_n)}$. For each $n\in\Bbb N$, set
$$\eqalign{H_n&=\{x:x\in[q_n,q'_n]\cap D,\,
\|\phi(y)-\phi(x)-S_{m_n}(y-x)\|\le\zeta(S_{m_n})\|y-x\|\cr
&\mskip370mu
\text{for every }y\in[q_n,q'_n]\cap D\}\cr
&=[q_n,q'_n]\cap D\cap\bigcap_{y\in[q_n,q'_n]\cap D}
\{x:x\in D,\cr
&\mskip270mu
\|\phi(y)-\phi(x)-S_{m_n}(y-x)\|\le\zeta(S_{m_n})\|y-x\|\}.\cr}$$
\noindent Because $\phi$ is continuous, $H_n=D\cap\overline{H}_n$,
writing $\overline{H}_n$ for the closure of $H_n$, so $H_n$ is
relatively measurable in $D$.
Note that if $x$, $y\in H_n$, then $y\in D\cap[q_n,q'_n]$, so that
\Centerline{$\|\phi(y)-\phi(x)-S_{m_n}(y-x)\|\le\zeta(S_{m_n})\|y-x\|$.}
Set
\Centerline{$H_n'=\{x:x\in H_n,\,\|T(x)-S_{m_n}\|\le\zeta(S_{m_n})\}$.}
\medskip
{\bf (c)} $D=\bigcup_{n\in\Bbb N}H'_n$. \Prf\ Let $x\in D$. Then
$T(x)\in A$, so there is a $k\in\Bbb N$ such that
$\|T(x)-S_k\|<\zeta(S_k)$. Let $\delta>0$ be such that
\Centerline{$\|\phi(y)-\phi(x)-T(x)(x-y)\|
\le(\zeta(S_k)-\|T(x)-S_k\|)\|x-y\|$}
\noindent whenever $y\in D$ and $\|y-x\|\le\delta$. Then
$$\eqalign{\|\phi(y)-\phi(x)-S_k(x-y)\|
&\le(\zeta(S_k)-\|T(x)-S_k\|)\|x-y\|+\|T(x)-S_k\|\|x-y\|\cr
&\le\zeta(S_k)\|x-y\|\cr}$$
\noindent whenever $y\in D\cap B(x,\delta)$. Let $q$, $q'\in\Bbb Q^r$
be such that $x\in[q,q']\subseteq B(x,\delta)$. Let $n$ be such that
$q=q_n$, $q'=q'_n$ and $k=m_n$. Then $x\in H'_n$.\ \Qed
\medskip
{\bf (d)} Write
\Centerline{$C_n=\{x:x\in H_n,\,\lim_{\delta\downarrow 0}
\Bover{\mu^*(H_n\cap B(x,\delta))}{\mu B(x,\delta)}=1\}$.}
\noindent Then $C_n\subseteq H'_n$.
\medskip
\Prf\ {\bf (i)} Take $x\in C_n$, and set $\tilde T=T(x)-S_{m_n}$. I
have
to show that $\|\tilde T\|\le\zeta(S_{m_n})$. Take $\epsilon>0$. Let
$\delta_0>0$ be such that
\Centerline{$\|\phi(y)-\phi(x)-T(x)(y-x)\|\le\epsilon\|y-x\|$}
\noindent whenever $y\in D$ and $\|y-x\|\le\delta_0$. Since
\Centerline{$\|\phi(y)-\phi(x)-S_{m_n}(y-x)\|\le\zeta(S_{m_n})\|y-x\|$}
\noindent whenever $y\in H_n$, we have
\Centerline{$\|\tilde T(y-x)\|\le(\epsilon+\zeta(S_{m_n}))\|y-x\|$}
\noindent whenever $y\in H_n$ and $\|y-x\|\le\delta_0$.
\medskip
\quad{\bf (ii)} By 262L, there is a $\delta_1>0$ such that
$(1+2\epsilon)\delta_1\le\delta_0$ and $\rho(x+z,H_n)\le\epsilon\|z\|$
whenever $0<\|z\|\le\delta_1$. So if $\|z\|\le\delta_1$ there is a
$y\in
H_n$ such that $\|x+z-y\|\le 2\epsilon\|z\|$. (If $z=0$ we can take
$y=x$.) Now $\|x-y\|\le (1+2\epsilon)\|z\|\le\delta_0$, so
$$\eqalign{\|\tilde Tz\|
&\le\|\tilde T(y-x)\|+\|\tilde T(x+z-y)\|\cr
&\le(\epsilon+\zeta(S_{m_n}))\|y-x\|+\|\tilde T\|\|x+z-y\|\cr
&\le(\epsilon+\zeta(S_{m_n}))\|z\|
+(\epsilon+\zeta(S_{m_n})+\|\tilde T\|)\|x+z-y\|\cr
&\le(\epsilon+\zeta(S_{m_n})+2\epsilon^2+2\epsilon\zeta(S_{m_n})
+2\epsilon\|\tilde T\|)\|z\|.\cr}$$
\noindent And this is true whenever $0<\|z\|\le\delta_1$.
But multiplying this inequality by
suitable positive scalars we see that
\Centerline{$\|\tilde Tz\|
\le\bigl(\epsilon+\zeta(S_{m_n})+2\epsilon^2+2\epsilon\zeta(S_{m_n})
+2\epsilon\|\tilde T\|\bigr)\|z\|$}
\noindent for all $z\in\BbbR^r$, and
\Centerline{$\|\tilde T\|
\le\epsilon+\zeta(S_{m_n})+2\epsilon^2+2\epsilon\zeta(S_{m_n})
+2\epsilon\|\tilde T\|$.}
\noindent As $\epsilon$ is
arbitrary, $\|\tilde T\|\le\zeta(S_{m_n})$, as claimed.\ \Qed
\medskip
{\bf (e)} By 261Da, $H_n\setminus C_n$ is negligible for every $n$, so
$H_n\setminus H'_n$ is negligible, and
\Centerline{$H'_n=D\cap(\overline{H}_n\setminus(H_n\setminus H'_n))$}
\noindent is relatively measurable in $D$. Set
\Centerline{$D_n=H'_n\setminus\bigcup_{k<n}H'_k$,
\quad$T_n=S_{m_n}$}
\noindent for each $n$; these serve.
}%end of proof of 262M
\leader{262N}{Corollary} Let $\phi$ be a function from a subset $D$ of
$\Bbb R^r$ to $\BbbR^s$, and suppose that $\phi$ is differentiable relative to
its domain at each point of $D$. Then $D$ can be expressed as the
union of
a disjoint sequence $\sequencen{D_n}$ of relatively measurable subsets
of $D$ such that $\phi\restr D_n$ is Lipschitz for each $n\in\Bbb N$.
\proof{ In 262M, take $\zeta(T)=1$ for every $T\in A=M_{sr}$. If $x$,
$y\in D_n$ then
$$\eqalign{\|\phi(x)-\phi(y)\|
&\le\|\phi(x)-\phi(y)-T_n(x-y)\|+\|T_n(x-y)\|\cr
&\le\|x-y\|+\|T_n\|\|x-y\|,\cr}$$
\noindent so $\phi\restr D_n$ is $(1+\|T_n\|)$-Lipschitz.
}%end of proof of 262N
\leader{262O}{Corollary} Suppose that $\phi$ is an injective function
from a measurable subset $D$ of $\BbbR^r$ to $\BbbR^r$, and that
$\phi$ is differentiable relative to its domain at every point of $D$.
(a) If $A\subseteq D$ is negligible, $\phi[A]$ is negligible.
(b) If $E\subseteq D$ is measurable, then $\phi[E]$ is
measurable.
(c) If $D$ is measurable and $f$ is a measurable function defined on a
subset of $\BbbR^r$, then $f\phi^{-1}$ is measurable.
(d) If $H\subseteq\BbbR^r$ and $\phi^{-1}$ is defined almost everywhere
in $H$, and if $f$ is a function defined almost everywhere in
$\Bbb R^r$, then $f\phi^{-1}$ is defined almost everywhere in $H$.
\proof{ Take a sequence $\sequencen{D_n}$ as in 262N,
and apply 262E to $\phi\restr D_n$ for each $n$.
}%end of proof of 262O
\leader{262P}{Corollary} Let $\phi$ be a function from a a subset $D$ of
$\BbbR^r$ to $\BbbR^s$, and suppose that $\phi$ is differentiable
relative to its domain, with a derivative $T(x)$, at each point $x\in
D$. Then the function $x\mapsto T(x)$ is measurable in the sense that
$\tau_{ij}:D\to\Bbb R$ is measurable for all $i\le s$ and $j\le r$,
where $\tau_{ij}(x)$ is the
$(i,j)$th coefficient of the matrix $T(x)$ for all $i$, $j$ and $x$.
\proof{ For each $k\in\Bbb N$, apply 262M with $\zeta(T)=2^{-k}$ for
each $T\in A=M_{sr}$, obtaining sequences $\sequencen{D_{kn}}$ of
relatively measurable subsets of $D$ and $\sequencen{T_{kn}}$ in
$M_{sr}$. Let
$\tau^{(kn)}_{ij}$ be the $(i,j)$th coefficient of $T_{kn}$. Then we
have functions $f_{ijk}:D\to\Bbb R$ defined by setting
\Centerline{$f_{ijk}(x)=\tau^{(kn)}_{ij}$ if $x\in D_{kn}$.}
\noindent Because the $D_{kn}$ are relatively measurable, the $f_{ijk}$
are
measurable functions. For $x\in D_{kn}$,
\Centerline{$|\tau_{ij}(x)-f_{ijk}(x)|\le\|T(x)-T_n\|\le 2^{-k}$,}
\noindent so $|\tau_{ij}(x)-f_{ijk}(x)|\le 2^{-k}$ for every $x\in D$,
and
\Centerline{$\tau_{ij}=\lim_{k\to\infty}f_{ijk}$}
\noindent is measurable, as claimed.
}%end of proof of 262P
\leader{*262Q}{}\cmmnt{ This concludes the part of the section
which is essential for the rest of the chapter. However the main
results of \S263
will I think be better understood if you are aware of the fact that any
Lipschitz function is differentiable (relative to its domain) almost
everywhere in its domain. I devote the next couple of pages to a proof
of this fact, which apart from its intrinsic interest is a useful
exercise.
\medskip
\noindent}{\bf Rademacher's theorem} Let $\phi$ be a Lipschitz function
from a subset
of $\BbbR^r$ to $\BbbR^s$. Then $\phi$ is
differentiable relative to its domain almost everywhere in its domain.
\proof{{\bf (a)} By 262Ba and 262Ib, it will be enough to
deal with the
case $s=1$. By 262Bb, there is a Lipschitz function
$\tilde\phi:\BbbR^r\to\Bbb R$ extending $\phi$; now $\phi$ is
differentiable with respect to its domain at any point of $\dom\phi$ at
which $\tilde \phi$ is differentiable, so it will be enough if I can
show that $\tilde\phi$ is differentiable almost everywhere. To make
the notation more agreeable to the eye, I will suppose that $\phi$
itself was defined everywhere in $\BbbR^r$. Let $\gamma$ be a
Lipschitz constant for $\phi$.
The proof proceeds by induction on $r$. If $r=1$, we have a Lipschitz
function $\phi:\Bbb R\to\Bbb R$; now $\phi$ is absolutely
continuous in any bounded interval (262Bc), therefore differentiable
almost everywhere (225Cb). Thus the
induction starts. The rest of the proof is devoted to the inductive
step to $r>1$.
\medskip
{\bf (b)} The first step is to show that all the partial derivatives
$\pd{\phi}{\xi_j}$ are defined almost everywhere and are Borel
measurable.
\Prf\ Take $j\le r$. For $q\in\Bbb Q\setminus\{0\}$ set
\Centerline{$\Delta_q(x)=\Bover{1}{q}(\phi(x+qe_j)-\phi(x))$,}
\noindent writing $e_j$ for the $j$th unit vector of $\BbbR^r$.
Because $\phi$ is continuous, so is $\Delta_q$, so that $\Delta_q$ is a
Borel
measurable function for each $q$. Next, for any $x\in\Bbb
R^r$,
\Centerline{$D^+(x)=\limsup_{\delta\to 0}\Bover1{\delta}
(\phi(x+\delta e_j)-\phi(x))
=\lim_{n\to\infty}\sup_{q\in\Bbb Q,0<|q|\le 2^{-n}}\Delta_q(x)$,}
\noindent so that the set on which $D^+(x)$ is defined in $\Bbb R$ is
Borel and
$D^+$ is a Borel measurable function.
Similarly,
\Centerline{$D^-(x)=\liminf_{\delta\to 0}\Bover1{\delta}
(\phi(x+\delta e_j)-\phi(x))$}
\noindent is a Borel measurable function with Borel domain. So
\Centerline{$E=\{x:\pd{\phi}{\xi_j}(x)\text{ exists in }\Bbb R\}
=\{x:D^+(x)=D^-(x)\in\Bbb R\}$}
\noindent is a Borel set, and $\pd{\phi}{\xi_j}$ is a Borel measurable
function.
On the other hand, if we identify $\BbbR^r$ with
$\BbbR^J\times\Bbb R$, taking $J$ to be
$\{1,\ldots,j-1,j+1,\ldots,r\}$, then we can think of
Lebesgue measure $\mu$
on $\BbbR^r$ as being the product of Lebesgue measure $\mu_J$ on
$\BbbR^J$ with Lebesgue measure $\mu_1$ on $\Bbb R$ (251N). Now for
every $y\in\BbbR^J$ we have a function $\phi_y:\Bbb R\to\Bbb R$ defined
by writing
\Centerline{$\phi_y(\sigma)=\phi(y,\sigma)$,}
\noindent and $E$ becomes
\Centerline{$\{(y,\sigma):\phi_y'(\sigma)$ is defined$\}$,}
\noindent so that all the sections
\Centerline{$\{\sigma:(y,\sigma)\in E\}$}
\noindent are conegligible subsets of $\Bbb R$, because every
$\phi_y$ is Lipschitz, therefore differentiable almost everywhere, as
remarked in part (a) of the proof. Since we know that $E$ is
measurable, it must be conegligible, by Fubini's theorem (apply 252D or
252F to the complement of $E$).
Thus $\pd{\phi}{\xi_j}$ is defined almost everywhere, as claimed.\ \Qed
Write
\Centerline{$H=\{x:x\in\BbbR^r,\,\pd{\phi}{\xi_j}(x)
\text{ exists for every }j\le r\}$,}
\noindent so that $H$ is a conegligible Borel set in $\BbbR^r$.
\medskip
{\bf (c)} For the rest of this proof, I fix on the natural
identification of $\BbbR^r$ with $\BbbR^{r-1}\times\Bbb R$,
identifying $(\xi_1,\ldots,\xi_r)$ with
$((\xi_1,\ldots,\xi_{r-1}),\xi_r)$.
For $x\in H$, let $T(x)$ be the $1\times r$ matrix
$(\pd{\phi}{\xi_1}(x),\ldots,\pd{\phi}{\xi_r}(x))$.
\medskip
{\bf (d)} Set
\Centerline{$H_1=\{x:x\in H,\,\lim_{u\to\tbf{0}\text{ in }\BbbR^{r-1}}
\Bover{|\phi(x+(u,0))-\phi(x)-T(x)(u,0)|}{\|u\|}=0\}$.}
\noindent I claim that $H_1$ is conegligible in $\BbbR^r$.
\Prf\ This is really the same idea as in (b). For $x\in H$, $x\in H_1$
iff
\inset{for every $\epsilon>0$ there is a $\delta>0$ such that
\Centerline{$|\phi(x+(u,0))-\phi(x)-T(x)(u,0)|\le\epsilon\|u\|$}
\noindent whenever $\|u\|\le\delta$,}
\noindent that is, iff
\inset{for every $m\in\Bbb N$ there is an $n\in\Bbb N$ such that
\Centerline{$|\phi(x+(u,0))-\phi(x)-T(x)(u,0)|\le 2^{-m}\|u\|$}
\noindent whenever $u\in\Bbb Q^{r-1}$ and $\|u\|\le 2^{-n}$.}
\noindent But for any particular $m\in\Bbb N$ and $u\in\Bbb Q^{r-1}$ the
set
\Centerline{$\{x:|\phi(x+(u,0))-\phi(x)-T(x)(u,0)|\le 2^{-m}\|u\|\}$}