forked from yugt/MeasureTheory
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mt264.tex
1099 lines (860 loc) · 43.1 KB
/
mt264.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\frfilename{mt264.tex}
\versiondate{12.5.03}
\copyrightdate{1994}
\def\chaptername{Change of variable in the integral}
\def\sectionname{Hausdorff measures}
\newsection{264}
The next topic I wish to approach is the question of `surface
measure'; a useful example to bear in mind throughout this section and
the next is the notion of area for regions on the sphere, but any other
smoothly curved two-dimensional surface in three-dimensional space will
serve equally well. It is I think more than plausible that our
intuitive concepts of `area' for such surfaces should correspond to
appropriate measures. But formalizing this intuition is
non-trivial, especially if we seek the generality that simple geometric
ideas lead us to; I mean, not contenting ourselves with arguments that
depend on the special nature of the sphere, for instance, to describe
spherical surface area. I divide the problem into two parts. In this
section I will describe a construction which enables us to define the
$r$-dimensional measure of an $r$-dimensional surface -- among other
things -- in $s$-dimensional space. In the next section I will set out
the basic theorems making it possible to calculate these measures
effectively in the leading cases.
\leader{264A}{Definitions} Let $s\ge 1$ be an integer, and $r>0$.
\cmmnt{(I am primarily concerned with integral $r$,
but will not insist on this until it becomes necessary, since there are
some very interesting ideas which involve non-integral `dimension'
$r$.)} For any $A\subseteq \BbbR^s$, $\delta>0$ set
$$\eqalign{\theta_{r\delta}A
=\inf\{\sum_{n=0}^{\infty}(\diam A_n)^r:\sequencen{A_n}
&\text{ is a sequence of subsets of }\BbbR^s\text{ covering }A,\cr
&\qquad\qquad\qquad\quad\diam A_n\le\delta\text{ for every }
n\in\Bbb N\}.\cr}$$
\noindent It is convenient in this context to
say that $\diam\emptyset=0$.
Now set
\Centerline{$\theta_rA=\sup_{\delta>0}\theta_{r\delta}A$;}
\noindent $\theta_r$ is {\bf $r$-dimensional Hausdorff outer measure} on
$\BbbR^s$.
\leader{264B}{}\cmmnt{ Of course we must immediately check the
following:
\medskip
\noindent}{\bf Lemma} $\theta_r$, as defined in 264A, is always an outer
measure.
\proof{ You should be used to these arguments by now, but there is an
extra step in this one, so I spell out the details.
\medskip
{\bf (a)} Interpreting the diameter of the empty set as $0$, we have
$\theta_{r\delta}\emptyset=0$ for every $\delta>0$, so
$\theta_r\emptyset=0$.
\medskip
{\bf (b)} If $A\subseteq B\subseteq\BbbR^s$, then every sequence
covering $B$
also covers $A$, so $\theta_{r\delta}A\le\theta_{r\delta}B$ for every
$\delta$ and $\theta_rA\le\theta_rB$.
\medskip
{\bf (c)} Let $\sequencen{A_n}$ be a sequence of subsets of $\BbbR^s$
with union $A$, and take any $a<\theta_rA$. Then there is a $\delta>0$
such that $a\le\theta_{r\delta}A$. Now
$\theta_{r\delta}A\le\sum_{n=0}^{\infty}\theta_{r\delta}(A_n)$. \Prf\
Let $\epsilon>0$, and for each $n\in\Bbb N$ choose a sequence
$\sequence{m}{A_{nm}}$ of sets, covering $A_n$, with
$\diam A_{nm}\le\delta$ for every $m$ and
$\sum_{m=0}^{\infty}(\diam A_{nm})^r\le\theta_{r\delta}A_n+2^{-n}\epsilon$.
Then $\langle A_{nm}\rangle_{m,n\in\Bbb N}$ is a cover of $A$ by
countably many sets of diameter at most $\delta$, so
\Centerline{$\theta_{r\delta}A
\le\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}(\diam A_{nm})^r
\le\sum_{n=0}^{\infty}\theta_{r\delta}A_n+2^{-n}\epsilon
=2\epsilon+\sum_{n=0}^{\infty}\theta_{r\delta}A_n$.}
\noindent As $\epsilon$ is arbitrary, we have the result.\ \Qed
Accordingly
\Centerline{$a\le\theta_{r\delta}A
\le\sum_{n=0}^{\infty}\theta_{r\delta}A_n
\le\sum_{n=0}^{\infty}\theta_rA_n$.}
\noindent As $a$ is arbitrary,
\Centerline{$\theta_rA\le\sum_{n=0}^{\infty}\theta_rA_n$;}
\noindent as $\sequencen{A_n}$ is arbitrary, $\theta_r$ is an outer
measure.
}%end of proof of 264B
\leader{264C}{Definition} If $s\ge 1$ is an integer, and $r>0$, then
{\bf Hausdorff $r$-dimensional measure} on $\BbbR^s$ is the measure
$\mu_{Hr}$ on $\BbbR^s$ defined by \Caratheodory's method from the outer
measure $\theta_r$ of 264A-264B.
\leader{264D}{Remarks}\cmmnt{ {\bf (a)} It is important to note that
the sets used in
the definition of the $\theta_{r\delta}$ need not be balls; even in
$\BbbR^2$ not every set $A$ can be covered by a ball of the same
diameter as $A$.
\header{264Db}}{\bf (b)} In the definitions above I require $r>0$. It
is sometimes appropriate to take $\mu_{H0}$ to be counting measure.
\cmmnt{This
is nearly the result of applying the formulae above with $r=0$, but
there can be difficulties if we interpret them over-literally.}
\header{264Dc}{\bf (c)} All Hausdorff measures must be
complete\cmmnt{, because
they are defined by \Caratheodory's method (212A)}. For $r>0$, they
are atomless\cmmnt{ (264Yg)}. \cmmnt{In terms of the other
criteria of \S211,
however, they are very ill-behaved; for instance, if $r$, $s$ are
integers and $1\le r<s$, then $\mu_{Hr}$ on $\BbbR^s$ is not
semi-finite. (I will give a proof of this in 439H in Volume 4.)
Nevertheless, they do have some striking properties which make them
reasonably tractable.}
\cmmnt{
\header{264Dd}{\bf (d)} In 264A, note that
$\theta_{r\delta}A\le\theta_{r\delta'}A$ when $0<\delta'\le\delta$;
consequently, for instance,
$\theta_rA=\lim_{n\to\infty}\theta_{r,2^{-n}}A$. I have allowed
arbitrary sets $A_n$ in the covers, but it makes no difference if we
restrict our attention to covers consisting
of open sets or of closed sets (264Xc).
}%end of comment
\leader{264E}{Theorem} Let $s\ge 1$ be an integer, and $r\ge 0$;
let $\mu_{Hr}$ be Hausdorff $r$-dimensional measure on $\BbbR^s$, and
$\Sigma_{Hr}$ its domain. Then every Borel subset of $\BbbR^s$ belongs
to $\Sigma_{Hr}$.
\proof{ This is trivial if $r=0$; so suppose henceforth that $r>0$.
\medskip
{\bf (a)} The first step is to note that if $A$, $B$ are subsets of
$\Bbb R^s$
and $\eta>0$ is such that $\|x-y\|\ge\eta$ for all $x\in A$, $y\in B$,
then $\theta_r(A\cup B)=\theta_rA+\theta_rB$, where $\theta_r$ is
$r$-dimensional Hausdorff outer measure on $\BbbR^s$. \Prf\ Of course
$\theta_r(A\cup B)\le\theta_rA+\theta_rB$, because $\theta_r$ is an
outer measure. For the reverse inequality, we may suppose that
$\theta_r(A\cup B)<\infty$, so that $\theta_rA$ and $\theta_rB$ are both
finite. Let $\epsilon>0$ and let $\delta_1$, $\delta_2>0$ be such that
\Centerline{$\theta_rA+\theta_rB\le
\theta_{r\delta_1}A+\theta_{r\delta_2}B+\epsilon$.}
\noindent Set $\delta=\min(\delta_1,\delta_2,\bover12\eta)>0$ and let
$\sequencen{A_n}$ be a sequence of sets of diameter at most $\delta$,
covering $A\cup B$, and such that
$\sum_{n=0}^{\infty}(\diam A_n)^r\le\theta_{r\delta}(A\cup B)+\epsilon$.
Set
\Centerline{$K=\{n:A_n\cap A\ne\emptyset\}$,
\quad$L=\{n:A_n\cap B\ne\emptyset\}$.}
\noindent Because
\Centerline{$\|x-y\|\ge\eta>\diam A_n$}
\noindent whenever $x\in A$, $y\in B$ and $n\in\Bbb N$, $K\cap
L=\emptyset$; and of course $A\subseteq\bigcup_{n\in K}A_k$,
$B\subseteq\bigcup_{n\in L}A_n$. Consequently
$$\eqalign{\theta_rA+\theta_rB
&\le\epsilon+\theta_{r\delta_1}A+\theta_{r\delta_2}B\cr
&\le\epsilon+\sum_{n\in K}(\diam A_n)^r+\sum_{n\in L}(\diam A_n)^r\cr
&\le\epsilon+\sum_{n=0}^{\infty}(\diam A_n)^r
\le2\epsilon+\theta_{r\delta}(A\cup B)
\le 2\epsilon+\theta_r(A\cup B).\cr}$$
\noindent As $\epsilon$ is arbitrary, $\theta_r(A\cup
B)\ge\theta_rA+\theta_rB$, as required.\ \Qed
\medskip
{\bf (b)} It follows that
$\theta_rA=\theta_r(A\cap G)+\theta_r(A\setminus G)$ whenever
$A\subseteq \BbbR^s$ and $G$ is open.
\Prf\ As usual, it is enough to consider the case $\theta_rA<\infty$
and to show that in this case
$\theta_r(A\cap G)+\theta_r(A\setminus G)\le\theta_rA$. Set
\Centerline{$A_n=\{x:x\in A,\,\|x-y\|\ge 2^{-n}$ for every
$y\in A\setminus G\}$,}
\Centerline{$B_0=A_0$,
\quad$B_n=A_n\setminus A_{n-1}$ for $n>1$.}
\noindent Observe that $A_n\subseteq A_{n+1}$ for every $n$ and
$\bigcup_{n\in\Bbb N}A_n=\bigcup_{n\in\Bbb N}B_n=A\cap G$. The point
is that if $m$, $n\in\Bbb N$ and $n\ge m+2$, and if $x\in B_m$ and
$y\in B_n$, then there is a $z\in A\setminus G$ such that
$\|y-z\|<2^{-n+1}\le 2^{-m-1}$, while $\|x-z\|$ must be at least
$2^{-m}$, so $\|x-y\|\ge\|x-z\|-\|y-z\|\ge 2^{-m-1}$. It follows
that for any $k\ge 0$
\Centerline{$\sum_{m=0}^k\theta_rB_{2m}
=\theta_r(\bigcup_{m\le k}B_{2m})\le\theta_r(A\cap G)<\infty$,}
\Centerline{$\sum_{m=0}^k\theta_rB_{2m+1}
=\theta_r(\bigcup_{m\le k}B_{2m+1})\le\theta_r(A\cap G)<\infty$,}
\noindent (inducing on $k$, using (a) above for the inductive step).
Consequently $\sum_{n=0}^{\infty}\theta_rB_n<\infty$.
But now, given $\epsilon>0$, there is an $m$ such that
$\sum_{n=m}^{\infty}\theta_rB_m\le\epsilon$, so that
$$\eqalignno{\theta_r(A\cap G)+\theta_r(A\setminus G)
&\le\theta_rA_m+\sum_{n=m}^{\infty}\theta_rB_n+\theta_r(A\setminus G)\cr
&\le\epsilon+\theta_rA_m+\theta_r(A\setminus G)
=\epsilon+\theta_r(A_m\cup(A\setminus G))\cr
\noalign{\noindent (by (a) again, since $\|x-y\|\ge 2^{-m}$ for
$x\in A_m$, $y\in A\setminus G$)}
&\le\epsilon+\theta_rA.\cr}$$
\noindent As $\epsilon$ is arbitrary,
$\theta_r(A\cap G)+\theta_r(A\setminus G)\le\theta_rA$,
as required.\ \Qed
\medskip
{\bf (c)} Part (b) shows exactly that open sets belong to $\Sigma_{Hr}$.
It follows at once that the Borel $\sigma$-algebra of $\BbbR^s$ is
included in $\Sigma_{Hr}$, as claimed.
}%end of proof of 264E
\leader{264F}{Proposition} Let $s\ge 1$ be an integer, and $r>0$;
let $\theta_r$ be $r$-dimensional Hausdorff outer measure on $\BbbR^s$,
and write $\mu_{Hr}$ for $r$-dimensional Hausdorff measure on
$\BbbR^s$, $\Sigma_{Hr}$ for its domain. Then
(a) for every $A\subseteq \BbbR^s$ there is a Borel set $E\supseteq A$
such that $\mu_{Hr}E=\theta_rA$;
(b) $\theta_r=\mu^*_{Hr}$, the outer measure defined from $\mu_{Hr}$;
(c) if $E\in\Sigma_{Hr}$ is expressible as a countable union of sets of
finite measure,
there are Borel sets $E'$, $E''$ such that
$E'\subseteq E\subseteq E''$ and $\mu_{Hr}(E''\setminus E')=0$.
\proof{{\bf (a)} If $\theta_rA=\infty$ this is trivial -- take
$E=\BbbR^s$.
Otherwise, for each $n\in\Bbb N$ choose a sequence
$\sequence{m}{A_{nm}}$ of sets of diameter at most $2^{-n}$, covering
$A$, and such that
$\sum_{m=0}^{\infty}(\diam A_{nm})^r\le\theta_{r,2^{-n}}A+2^{-n}$. Set
$F_{nm}=\overline{A}_{nm}$, $E=\bigcap_{n\in\Bbb N}\bigcup_{m\in\Bbb
N}F_{nm}$; then $E$ is a Borel set in $\BbbR^s$. Of course
\Centerline{$A\subseteq\bigcap_{n\in\Bbb N}\bigcup_{m\in\Bbb N}A_{mn}
\subseteq\bigcap_{n\in\Bbb N}\bigcup_{m\in\Bbb N}F_{nm}=E$.}
For any $n\in\Bbb N$,
\Centerline{$\diam F_{nm}=\diam A_{nm}\le 2^{-n}$
for every $m\in\Bbb N$,}
\Centerline{$\sum_{m=0}^{\infty}(\diam F_{nm})^r
=\sum_{m=0}^{\infty}(\diam A_{nm})^r
\le\theta_{r,2^{-n}}A+2^{-n}$,}
\noindent so
\Centerline{$\theta_{r,2^{-n}}E\le\theta_{r,2^{-n}}A+2^{-n}$.}
\noindent Letting $n\to\infty$,
\Centerline{$\theta_rE=\lim_{n\to\infty}\theta_{r,2^{-n}}E
\le\lim_{n\to\infty}\theta_{r,2^{-n}}A+2^{-n}
=\theta_rA$;}
\noindent of course it follows that $\theta_rA=\theta_rE$, because
$A\subseteq E$. Now by 264E we know that $E\in\Sigma_{Hr}$, so we can
write $\mu_{Hr}E$ in place of $\theta_rE$.
\medskip
{\bf (b)} This follows at once, because we have
\Centerline{$\mu_{Hr}^*A
=\inf\{\mu_{Hr}E:E\in\Sigma_{Hr},\,A\subseteq E\}
=\inf\{\theta_rE:E\in\Sigma_{Hr},\,A\subseteq E\}
\ge\theta_rA$}
\noindent for every $A\subseteq \BbbR^s$. On the other hand, if
$A\subseteq\BbbR^s$, we have a Borel set $E\supseteq A$ such that
$\theta_rA=\mu_{Hr}E$, so that $\mu_{Hr}^*A\le\mu_{Hr}E=\theta_rA$.
\medskip
{\bf (c)(i)} Suppose first that $\mu_{Hr}E<\infty$. By (a), there are
Borel sets $E''\supseteq E$, $H\supseteq E''\setminus E$ such that
$\mu_{Hr}E''=\theta_rE$,
\Centerline{$\mu_{Hr}H=\theta_r(E''\setminus E)
=\mu_{Hr}(E''\setminus E)
=\mu_{Hr}E''-\mu_{Hr}E
=\mu_{Hr}E''-\theta_rE
=0$.}
\noindent So setting $E'=E''\setminus H$, we obtain a Borel set
included in $E$, and
\Centerline{$\mu_{Hr}(E''\setminus E')\le\mu_{Hr}H=0$.}
\medskip
\quad{\bf (ii)} For the general case, express $E$ as $\bigcup_{n\in\Bbb
N}E_n$ where $\mu_{Hr}E_n<\infty$ for each $n$; take Borel sets $E'_n$,
$E_n''$ such that $E_n'\subseteq E_n\subseteq E_n''$ and
$\mu_{Hr}(E_n''\setminus E_n')=0$ for each $n$; and set
$E'=\bigcup_{n\in\Bbb N}E'_n$, $E''=\bigcup_{n\in\Bbb N}E_n''$.
}%end of proof of 264F
\leader{264G}{Lipschitz functions}\dvro{\bf: }{ The definition of
Hausdorff measure is exactly adapted to the following result,
corresponding to 262D.
\wheader{264G}{6}{2}{2}{48pt}
\noindent}{\bf Proposition} Let $m$, $s\ge 1$ be integers, and
$\phi:D\to\BbbR^s$ a $\gamma$-Lipschitz function, where $D$ is a subset
of $\BbbR^m$. Then for any $A\subseteq D$ and $r\ge 0$,
\Centerline{$\mu_{Hr}^*(\phi[A])\le\gamma^r\mu_{Hr}^*A$}
\noindent for every $A\subseteq D$, writing $\mu_{Hr}$ for
$r$-dimensional Hausdorff outer measure on either $\BbbR^m$ or
$\BbbR^s$.
\proof{{\bf (a)} The case $r=0$ is trivial, since then $\gamma^r=1$ and
$\mu_{Hr}^*A=\mu_{H0}A=\#(A)$ if $A$ is finite, $\infty$
otherwise, while $\#(\phi[A])\le\#(A)$.
\medskip
{\bf (b)} If $r>0$, then take any $\delta>0$. Set
$\eta=\delta/(1+\gamma)$ and consider $\theta_{r\eta}:\Cal
P\BbbR^m\to[0,\infty]$, defined as in 264A. We know from 264Fb
that
\Centerline{$\mu_{Hr}^*A=\theta_rA\ge\theta_{r\eta}A$,}
\noindent so there is a sequence $\sequencen{A_n}$ of sets, all of
diameter at most $\eta$, covering $A$, with
$\sum_{n=0}^{\infty}(\diam A_n)^r\le\mu_{Hr}^*A+\delta$.
Now $\phi[A]\subseteq\bigcup_{n\in\Bbb N}\phi[A_n\cap D]$ and
\Centerline{$\diam \phi[A_n\cap D]
\le\gamma\diam A_n\le\gamma\eta\le\delta$}
\noindent for every $n$. Consequently
\Centerline{$\theta_{r\delta}(\phi[A])\le\sum_{n=0}^{\infty}
(\diam \phi[A_n])^r
\le\sum_{n=0}^{\infty}\gamma^r(\diam A_n)^r
\le\gamma^r(\mu_{Hr}^*A+\delta)$,}
\noindent and
\Centerline{$\mu_{Hr}^*(\phi[A])
=\lim_{\delta\downarrow 0}\theta_{r\delta}(\phi[A])
\le\gamma^r\mu_{Hr}^*A$,}
\noindent as claimed.
}%end of proof of 264G
\leader{264H}{}\cmmnt{ The next step is to relate $r$-dimensional
Hausdorff
measure on $\BbbR^r$ to Lebesgue measure on $\BbbR^r$. The basic
fact we need is the following, which is even more important for the idea
in its proof than for the result.
\wheader{264H}{6}{2}{2}{48pt}\noindent}{\bf Theorem}
%hold this line to get spacing right
Let $r\ge 1$ be an integer, and $A$ a bounded
subset of $\BbbR^r$; write $\mu_r$ for Lebesgue measure on $\BbbR^r$
and $d=\diam A$. Then
\Centerline{$\mu_r^*(A)\le\mu_rB(\tbf{0},\Bover{d}2)=2^{-r}\beta_rd^r$,}
\noindent where $B(\tbf{0},\bover{d}2)$ is the ball with centre
$\tbf{0}$ and
diameter $d$, so that $B(\tbf{0},1)$ is the unit ball in $\BbbR^r$, and
has measure
$$\eqalign{\beta_r
&=\Bover{1}{k!}\pi^k\text{ if }r=2k\text{ is even},\cr
&=\Bover{2^{2k+1}k!}{(2k+1)!}\pi^k\text{ if }r=2k+1\text{ is odd}.\cr}$$
\proof{{\bf (a)} For the calculation of $\beta_r$, see 252Q or
252Xi.
\medskip
{\bf (b)} The case $r=1$ is elementary, for in this case $A$ is included
in an interval of length $\diam A$, so that $\mu_1^*A\le\diam A$. So
henceforth let us suppose that $r\ge 2$.
\medskip
{\bf (c)} For $1\le i\le r$ let $S_i:\BbbR^r\to\BbbR^r$ be reflection
in the $i$th coordinate, so that
$S_ix=(\xi_1,\ldots,
\ifdim\pagewidth>467pt\penalty-100\fi
\xi_{i-1},-\xi_i,\xi_{i+1},
\ifdim\pagewidth>467pt\penalty-50\fi
\ldots,
\ifdim\pagewidth>467pt\penalty-10\fi
\xi_r)$ for every
$x=(\xi_1,\ldots,\xi_r)\in \BbbR^r$. Let us say that a set
$C\subseteq\BbbR^r$ is {\bf symmetric in coordinates in $J$}, where
$J\subseteq\{1,\ldots,r\}$, if $S_i[C]=C$ for $i\in J$. Now the centre
of the argument is the following fact: if $C\subseteq\Bbb R$ is a
bounded set which is symmetric in coordinates in $J$, where $J$ is a
proper subset of $\{1,\ldots,r\}$, and $j\in\{1,\ldots,r\}\setminus J$,
then there is a set $D$, symmetric in coordinates in $J\cup\{j\}$,
such that $\diam D\le\diam C$ and $\mu_r^*C\le\mu^*_rD$.
\Prf\ {\bf (i)} Because Lebesgue measure is invariant under permutation
of coordinates, it is enough to deal with the case $j=r$. Start by
writing $F=\overline{C}$, so that $\diam F=\diam C$ and
$\mu_rF\ge\mu_r^*C$. Note that because $S_i$ is a homeomorphism for
every $i$,
\Centerline{$S_i[F]=S_i[\overline{C}]=\overline{S_i[C]}=\overline{C}=F$}
\noindent for $i\in J$, and $F$ is symmetric in coordinates in $J$.
For $y=(\eta_1,\ldots,\eta_{r-1})\in\BbbR^{r-1}$, set
\Centerline{$F_y=\{\xi:(\eta_1,\ldots,\eta_{r-1},\xi)\in F\}$,\quad
$f(y)=\mu_1F_y$,}
\noindent where $\mu_1$ is Lebesgue measure on $\Bbb R$.
Set
\Centerline{$D=\{(y,\xi):y\in\BbbR^{r-1},\,|\xi|<\Bover12f(y)\}
\subseteq\BbbR^r$.}
\medskip
\quad{\bf (ii)} If $H\subseteq\BbbR^r$ is measurable and $H\supseteq D$,
then, writing $\mu_{r-1}$ for Lebesgue measure on $\BbbR^{r-1}$, we have
$$\eqalignno{\mu_rH
&=\int\mu_1\{\xi:(y,\xi)\in H\}\mu_{r-1}(dy)\cr
\noalign{\noindent (using 251N and 252D)}
&\ge\int\mu_1\{\xi:(y,\xi)\in D\}\mu_{r-1}(dy)
=\int f(y)\mu_{r-1}(dy)\cr
&=\int\mu_1\{\xi:(y,\xi)\in F\}\mu_{r-1}(dy)
=\mu_rF
\ge\mu^*_rC.\cr}$$
\noindent As $H$ is arbitrary, $\mu_r^*D\ge\mu_r^*C$.
\medskip
\quad{\bf (iii)} The next step is to check that $\diam D\le\diam C$.
If $x$, $x'\in D$, express them as $(y,\xi_r)$ and $(y',\xi_r')$.
Because $F$ is a bounded closed set in $\BbbR^r$, $F_y$ and $F_{y'}$ are
bounded closed subsets of $\Bbb R$. Also both $f(y)$ and $f(y')$ must
be
greater than $0$, so that $F_y$, $F_{y'}$ are both non-empty.
Consequently
\Centerline{$\alpha=\inf F_y$,\quad $\beta=\sup F_y$,
\quad$\alpha'=\inf F_{y'}$,
\quad$\beta'=\sup F_{y'}$}
\noindent are all defined in $\Bbb R$, and $\alpha$, $\beta\in F_y$,
while
$\alpha'$ and $\beta'$ belong to $F_{y'}$. We have
$$\eqalign{|\xi_r-\xi_r'|
&\le|\xi_r|+|\xi'_r|
<\Bover12f(y)+\Bover12f(y')\cr
&=\Bover12(\mu_1F_y+\mu_1F_{y'})
\le\Bover12(\beta-\alpha+\beta'-\alpha')
\le\max(\beta'-\alpha,\beta-\alpha').\cr}$$
\noindent So taking $(\xi,\xi')$ to be one of $(\alpha,\beta')$ or
$(\beta,\alpha')$, we can find $\xi\in F_y$, $\xi'\in F_{y'}$ such that
$|\xi-\xi'|\ge|\xi_r-\xi'_r|$. Now $z=(y,\xi)$, $z'=(y',\xi')$ both
belong to $F$, so
\Centerline{$\|x-x'\|^2=\|y-y'\|^2+|\xi_r-\xi_r'|^2
\le\|y-y'\|^2+|\xi-\xi'|^2
=\|z-z'\|^2
\le(\diam F)^2$,}
\noindent and $\|x-x'\|\le\diam F$. As $x$ and $x'$ are arbitrary,
$\diam D\le\diam F=\diam C$, as claimed.
\medskip
\quad{\bf (iv)} Evidently $S_r[D]=D$. Moreover, if $i\in J$, then
(interpreting $S_i$ as an operator on $\BbbR^{r-1}$)
\Centerline{$F_{S_i(y)}=F_y$ for every $y\in\BbbR^{r-1}$,}
\noindent so $f(S_i(y))=f(y)$ and, for $\xi\in \Bbb R$,
$y\in\BbbR^{r-1}$,
\Centerline{$(y,\xi)\in D\,\iff\,|\xi|<\bover12 f(y)\,
\iff\,|\xi|<\bover12f(S_i(y))
\,\iff\,(S_i(y),\xi)\in D$,}
\noindent so that $S_i[D]=D$. Thus $D$ is symmetric in coordinates in
$J\cup\{r\}$.\ \Qed
\medskip
{\bf (d)} The rest is easy. Starting from any bounded
$A\subseteq\BbbR^r$, set $A_0=A$ and construct inductively
$A_1,\ldots,A_r$ such that
\Centerline{$d=\diam A=\diam A_0\ge\diam A_1\ge\ldots\ge\diam A_r$,}
\Centerline{$\mu_r^*A=\mu_r^*A_0\le\ldots\le\mu_r^*A_r$,}
\Centerline{$A_j$ is symmetric in coordinates in $\{1,\ldots,j\}$ for
every $j\le r$.}
\noindent At the end, we have $A_r$ symmetric in coordinates in
$\{1,\ldots,r\}$. But this means that if $x\in A_r$ then
\Centerline{$-x=S_1S_2\ldots S_rx\in A_r$,}
\noindent so that
\Centerline{$\|x\|=\Bover12\|x-(-x)\|
\le\Bover12\diam A_r\le\Bover{d}2$.}
\noindent Thus $A_r\subseteq B(\tbf{0},\bover{d}2)$, and
\Centerline{$\mu_r^*A\le\mu_r^*A_r\le\mu_rB(\tbf{0},\Bover{d}2)$,}
\noindent as claimed.
}%end of proof of 264H
\leader{264I}{Theorem} Let $r\ge 1$ be an integer; let $\mu$ be
Lebesgue measure on $\BbbR^r$, and let $\mu_{Hr}$ be
$r$-dimensional Hausdorff measure on $\BbbR^r$. Then $\mu$ and
$\mu_{Hr}$ have the same measurable sets and
\Centerline{$\mu E=2^{-r}\beta_r\mu_{Hr}E$}
\noindent for every measurable set $E\subseteq\BbbR^r$, where
$\beta_r=\mu B(\tbf{0},1)$, so that the normalizing factor is
$$\eqalign{2^{-r}\beta_r
&=\Bover{1}{2^{2k}k!}\pi^k\text{ if }r=2k\text{ is even},\cr
&=\Bover{k!}{(2k+1)!}\pi^k\text{ if }r=2k+1\text{ is odd}.\cr}$$
\proof{{\bf (a)} Of course if $B=B(x,\alpha)$ is any ball of radius
$\alpha$,
\Centerline{$2^{-r}\beta_r(\diam B)^r
=\beta_r\alpha^r=\mu B$.}
\medskip
{\bf (b)} The point is that $\mu^*=2^{-r}\beta_r\mu_{Hr}^*$. \Prf\
Let $A\subseteq\BbbR^r$.
\medskip
\quad{\bf (i)} Let $\delta$, $\epsilon>0$. By
261F, there is a sequence $\sequencen{B_n}$ of balls, all of diameter
at most $\delta$, such that $A\subseteq\bigcup_{n\in\Bbb N}B_n$ and
$\sum_{n=0}^{\infty}\mu B_n\le\mu^*A+\epsilon$. Now, defining
$\theta_{r\delta}$ as in 264A,
\Centerline{$2^{-r}\beta_r\theta_{r\delta}(A)
\le 2^{-r}\beta_r\sum_{n=0}^{\infty}(\diam B_n)^r
=\sum_{n=0}^{\infty}\mu B_n
\le\mu^*A+\epsilon$.}
\noindent Letting $\delta\downarrow 0$,
\Centerline{$2^{-r}\beta_r\mu^*_{Hr}A\le\mu^*A+\epsilon$.}
\noindent As $\epsilon$ is arbitrary,
$2^{-r}\beta_r\mu_{Hr}^*A\le\mu^*A$.
\medskip
\quad{\bf (ii)} Let $\epsilon>0$. Then there is a sequence
$\sequencen{A_n}$ of sets of diameter at most $1$ such that
$A\subseteq\bigcup_{n\in\Bbb N}A_n$ and $\sum_{n=0}^{\infty}(\diam
A_n)^r\le\theta_{r1}A+\epsilon$, so that
\Centerline{$\mu^*A\le\sum_{n=0}^{\infty}\mu^*A_n
\le\sum_{n=0}^{\infty}2^{-r}\beta_r(\diam A_n)^r
\le 2^{-r}\beta_r(\theta_{r1}A+\epsilon)
\le 2^{-r}\beta_r(\mu_{Hr}^*A+\epsilon)$}
\noindent by 264H. As $\epsilon$ is arbitrary,
$\mu^*A\le 2^{-r}\beta_r\mu_{Hr}^*A$.\ \Qed
\medskip
{\bf (c)} Because $\mu$, $\mu_{Hr}$ are the measures defined from
their respective outer measures by \Caratheodory's method, it follows
at once that $\mu=2^{-r}\beta_r\mu_{Hr}$ in the strict sense required.
}%end of proof of 264I
\leader{*264J}{The Cantor \dvrocolon{set}}\cmmnt{ I remarked in 264A
that fractional
`dimensions' $r$ were of interest. I have no space for these here, and
they are off the main lines of this volume, but I will give one result
for its intrinsic interest.
\medskip
\noindent}{\bf Proposition} Let $C$ be the Cantor set in $[0,1]$. Set
$r=\ln 2/\ln 3$. Then the $r$-dimensional Hausdorff measure of $C$ is
$1$.
\proof{{\bf (a)} Recall that $C=\bigcap_{n\in\Bbb N}C_n$, where each
$C_n$ consists of $2^n$ closed intervals of length $3^{-n}$, and
$C_{n+1}$ is obtained from $C_n$ by deleting the middle (open) third of
each interval of $C_n$. (See 134G.) Because $C$ is
closed, $\mu_{Hr}C$ is defined (264E). Note that $3^r=2$.
\medskip
{\bf (b)} If $\delta>0$, take $n$ such that $3^{-n}\le\delta$; then $C$
can be covered by $2^n$ intervals of diameter $3^{-n}$, so
\Centerline{$\theta_{r\delta}C\le 2^n(3^{-n})^r=1$.}
\noindent Consequently
\Centerline{$\mu_{Hr}C=\mu_{Hr}^*C
=\lim_{\delta\downarrow 0}\theta_{r\delta}C\le 1$.}
\medskip
{\bf (c)} We need the following elementary fact: if $\alpha$, $\beta$,
$\gamma\ge 0$ and $\max(\alpha,\gamma)\le\beta$, then
$\alpha^r+\gamma^r\le(\alpha+\beta+\gamma)^r$. \Prf\ Because
$0<r\le 1$,
\Centerline{$\xi\mapsto(\xi+\eta)^r-\xi^r
=r\biggerint_0^{\eta}(\xi+\zeta)^{r-1}d\zeta$}
\noindent is non-increasing for every $\eta\ge 0$.
Consequently
$$\eqalign{(\alpha+\beta+\gamma)^r-\alpha^r-\gamma^r
&\ge (\beta+\beta+\gamma)^r-\beta^r-\gamma^r\cr
&\ge(\beta+\beta+\beta)^r-\beta^r-\beta^r
=\beta^r(3^r-2)
=0,\cr}$$
\noindent as required.\ \Qed
\medskip
{\bf (d)} Now suppose that $I\subseteq\Bbb R$ is any interval, and
$m\in\Bbb N$; write $j_m(I)$ for the number of the intervals composing
$C_m$ which are included in $I$. Then $2^{-m}j_m(I)\le(\diam I)^r$.
\Prf\ If $I$ does not meet $C_m$, this is trivial. Otherwise, induce
on
\Centerline{$l=\min\{i:I$ meets only one of the intervals composing
$C_{m-i}\}$.}
\noindent If $l=0$, so that $I$ meets only one of the intervals
composing $C_m$, then $j_m(I)\le 1$, and if $j_m(I)=1$ then
$\diam I\ge 3^{-m}$ so $(\diam I)^r\ge 2^{-m}$; thus the induction
starts. For
the inductive step to $l>1$, let $J$ be the interval of
$C_{m-l}$ which meets $I$, and $J'$, $J''$ the two intervals of
$C_{m-l+1}$ included in $J$, so that $I$ meets both $J'$ and $J''$, and
\Centerline{$j_m(I)=j_m(I\cap J)=j_m(I\cap J')+j_m(I\cap J'')$.}
\noindent By the inductive hypothesis,
\Centerline{$(\diam(I\cap J'))^r+(\diam(I\cap J''))^r
\ge 2^{-m}j_m(I\cap J')+2^{-m}j_m(I\cap J'')
=2^{-m}j_m(I)$.}
\noindent On the other hand, by (c),
$$\eqalign{(\diam(I\cap J'))^r+(\diam(I\cap J''))^r
&\le(\diam(I\cap J')+3^{-m+l-1}+\diam(I\cap J''))^r\cr
&=(\diam(I\cap J))^r
\le(\diam I)^r\cr}$$
\noindent because $J'$, $J''$ both have diameter at most $3^{-(m-l+1)}$,
the length of the interval between them.
Thus the induction continues.\ \Qed
\medskip
{\bf (e)} Now suppose that $\epsilon>0$. Then there is a sequence
$\sequencen{A_n}$ of sets, covering $C$, such that
\discrcenter{468pt}{$\sum_{n=0}^{\infty}(\diam A_n)^r
<\mu_{Hr}C+\epsilon$. }Take $\eta_n>0$ such that
$\sum_{n=0}^{\infty}(\diam A_n+\eta_n)^r\le\mu_{Hr}C+\epsilon$, and for
each $n$ take an open
interval $I_n\supseteq A_n$ of length at most $\diam A_n+\eta_n$ and
with neither endpoint belonging to $C$; this is possible because $C$
does not include any non-trivial interval. Now
$C\subseteq\bigcup_{n\in\Bbb N}I_n$; because $C$ is compact, there is a
$k\in\Bbb N$ such that $C\subseteq\bigcup_{n\le k}I_n$. Next, there is
an $m\in\Bbb N$ such that no endpoint of any $I_n$, for $n\le k$,
belongs to $C_m$. Consequently each of the intervals composing $C_m$
must be included in some $I_n$, and
(in the terminology of (d) above) $\sum_{n=0}^kj_m(I_n)\ge 2^m$.
Accordingly
\Centerline{$1
\le\sum_{n=0}^k2^{-m}j_m(I_n)
\le \sum_{n=0}^k(\diam I_n)^r
\le \sum_{n=0}^{\infty}(\diam A_n+\eta_n)^r
\le\mu_{Hr}C+\epsilon$.}
\noindent As $\epsilon$ is arbitrary, $\mu_{Hr}C\ge 1$, as required.
}%end of proof of 264J
\leader{*264K}{General metric spaces}\cmmnt{ While this chapter deals
exclusively with Euclidean spaces, readers familiar with the general
theory
of metric spaces may find the nature of the theory clearer if they use
the language of metric spaces in the basic definitions and results. I
therefore repeat the definition here, and spell out the corresponding
results in the exercises 264Yb-264Yl.
} Let $(X,\rho)$ be a metric space, and $r>0$. For any $A\subseteq X$,
$\delta>0$ set
$$\eqalign{\theta_{r\delta}A
=\inf\{\sum_{n=0}^{\infty}(\diam A_n)^r:\sequencen{A_n}
&\text{ is a sequence of subsets of }X\text{ covering }A,\cr
&\qquad\qquad\qquad\quad\diam A_n\le\delta\text{ for every }
n\in\Bbb N\},\cr}$$
\noindent interpreting the diameter of the empty set as $0$, and
$\inf\emptyset$ as $\infty$, so that $\theta_{r\delta}A=\infty$ if $A$
cannot be covered by a sequence of sets of diameter at most $\delta$.
Say
that $\theta_rA=\sup_{\delta>0}\theta_{r\delta}A$ is the
{\bf $r$-dimensional Hausdorff outer measure} of $A$, and take the
measure $\mu_{Hr}$ defined by \Caratheodory's method from this outer measure to be {\bf $r$-dimensional Hausdorff measure} on $X$.
\exercises{
\leader{264X}{Basic exercises $\pmb{>}$(a)}
%\spheader 264Xa
Show that all the functions $\theta_{r\delta}$ of 264A are outer
measures. Show that in that context, $\theta_{r\delta}(A)=0$ iff
$\theta_r(A)=0$, for any $\delta>0$ and any $A\subseteq\BbbR^s$.
\spheader 264Xb Let $s\ge 1$ be an integer, and $\theta$ an
outer measure on $\BbbR^s$ such that $\theta(A\cup B)=\theta A+\theta B$
whenever $A$, $B$ are non-empty subsets of $\BbbR^s$ and
$\inf_{x\in A,y\in B}\|x-y\|>0$. Show that every Borel subset of
$\BbbR^s$ is measured by the
measure defined from $\theta$ by \Caratheodory's method.
\sqheader 264Xc Let $s\ge 1$ be an integer and $r>0$;
define $\theta_{r\delta}$ as in 264A. Show that for any
$A\subseteq\BbbR^s$, $\delta>0$,
$$\eqalign{\theta_{r\delta}A
&=\inf\{\sum_{n=0}^{\infty}(\diam F_n)^r:\sequencen{F_n}
\text{ is a sequence of closed subsets of }X\cr
&\qquad\qquad\qquad\qquad\qquad\qquad\text{ covering }A,\diam
F_n\le\delta
\text{ for every }n\in\Bbb N\}\cr
&=\inf\{\sum_{n=0}^{\infty}(\diam G_n)^r:\sequencen{G_n}
\text{ is a sequence of open subsets of }X\cr
&\qquad\qquad\qquad\qquad\qquad\qquad\text{ covering }A,\diam
G_n\le\delta
\text{ for every }n\in\Bbb N\}.\cr}$$
\sqheader 264Xd Let $s\ge 1$ be an integer and $r\ge 0$;
let $\mu_{Hr}$ be $r$-dimensional Hausdorff measure on $\BbbR^s$.
Show that for every $A\subseteq \BbbR^s$ there is a
G$_{\delta}$ set (that is, a set expressible as the intersection of a
sequence of open sets) $H\supseteq A$ such that $\mu_{Hr}H=\mu^*_{Hr}A$.
({\it Hint\/}: use 264Xc.)
\sqheader 264Xe Let $s\ge 1$ be an integer, and $0\le r<r'$. Show that
if $A\subseteq\BbbR^s$ and the $r$-dimensional
Hausdorff outer measure $\mu_{Hr}^*A$ of $A$ is finite, then
$\mu_{Hr'}^*A$ must be zero.
\spheader 264Xf(i) Suppose that $f:[a,b]\to\Bbb R$ has graph
$\Gamma_f\subseteq\BbbR^2$, where $a\le b$ in $\Bbb R$. Show that the
outer measure $\mu_{H1}^*(\Gamma_f)$ of $\Gamma$ for one-dimensional
Hausdorff measure on $\BbbR^2$ is at most $b-a+\Var_{[a,b]}(f)$.
\Hint{if $f$ has finite variation, show that
$\diam(\Gamma_{f\restr\ooint{t,u}})
\le u-t+\Var_{\ooint{t,u}}(f)$; then use 224E.} (ii) Let
$f:[0,1]\to[0,1]$ be the Cantor function (134H). Show that
$\mu_{H1}(\Gamma_f)=2$. \Hint{264G.}
%264G
\spheader 264Xg\dvAnew{2009.} In 264A, show that
$$\eqalign{\theta_{r\delta}A
=\inf\{\sum_{n=0}^{\infty}(\diam A_n)^r:\sequencen{A_n}
&\text{ is a sequence of convex sets covering }A,\cr
&\qquad\qquad\qquad\quad\diam A_n\le\delta\text{ for every }
n\in\Bbb N\}\cr}$$
\noindent for any $A\subseteq\BbbR^s$.
%264A
\leader{264Y}{Further exercises (a)}
%\spheader 264Ya
Let $\theta_{11}$ be the outer measure on $\BbbR^2$ defined in 264A,
with
$r=\delta=1$, and $\mu_{11}$ the measure derived from $\theta_{11}$ by
\Caratheodory's method, $\Sigma_{11}$ its domain. Show that any set in
$\Sigma_{11}$ is either negligible or conegligible.
\spheader 264Yb Let $(X,\rho)$ be a metric space and
$r\ge 0$. Show that if $A\subseteq X$ and $\mu_{Hr}^*A<\infty$,
then $A$ is separable.
\spheader 264Yc Let $(X,\rho)$ be a metric space, and $\theta$ an
outer measure on $X$ such that $\theta(A\cup B)=\theta A+\theta B$
whenever $A$, $B$ are non-empty subsets of $X$ and $\inf_{x\in A,y\in
B}\rho(x,y)>0$. (Such an outer measure is called a {\bf metric outer
measure}.) Show that every open subset of $X$ is measured by the
measure defined from $\theta$ by \Caratheodory's method.
\spheader 264Yd Let $(X,\rho)$ be a metric space and $r>0$;
define $\theta_{r\delta}$ as in 264K. Show that for any
$A\subseteq X$,
$$\eqalign{\mu_{Hr}^*A
&=\sup_{\delta>0}\inf\{\sum_{n=0}^{\infty}(\diam F_n)^r:\sequencen{F_n}
\text{ is a sequence of closed subsets of }X\cr
&\qquad\qquad\qquad\qquad\qquad\qquad\text{ covering }A,\,\diam
F_n\le\delta
\text{ for every }n\in\Bbb N\}\cr
&=\sup_{\delta>0}\inf\{\sum_{n=0}^{\infty}(\diam G_n)^r:\sequencen{G_n}
\text{ is a sequence of open subsets of }X\cr
&\qquad\qquad\qquad\qquad\qquad\qquad\text{ covering }A,\,\diam
G_n\le\delta
\text{ for every }n\in\Bbb N\}.\cr}$$
\spheader 264Ye Let $(X,\rho)$ be a metric space and $r\ge 0$;
let $\mu_{Hr}$ be $r$-dimensional Hausdorff measure on $X$.
Show that for every $A\subseteq X$ there is a
G$_{\delta}$ set $H\supseteq A$ such that $\mu_{Hr}H=\mu^*_{Hr}A$ is the
$r$-dimensional Hausdorff outer measure of $A$.
\spheader 264Yf Let $(X,\rho)$ be a metric space and $r\ge 0$;
let $Y$ be any subset of $X$, and give $Y$ its induced metric $\rho_Y$.
(i) Show that the $r$-dimensional Hausdorff outer measure
$\mu^{(Y)*}_{Hr}$ on $Y$ is just the restriction to $\Cal PY$ of the
outer measure $\mu_{Hr}^*$ on $X$. (ii) Show that if {\it either}
$\mu_{Hr}^*Y<\infty$ {\it or} $\mu_{Hr}$ measures $Y$ then
$r$-dimensional Hausdorff measure $\mu^{(Y)}_{Hr}$ on
$Y$ is just the subspace measure on $Y$ induced by the measure
$\mu_{Hr}$ on $X$.
\spheader 264Yg Let $(X,\rho)$ be a metric space
and $r>0$. Show that $r$-dimensional Hausdorff measure on $X$ is
atomless. ({\it Hint\/}: Let $E\in\dom\mu_{Hr}$. (i) If
$E$ is not separable, there is an open set $G$ such that $E\cap G$ and
$E\setminus G$ are both non-separable, therefore both non-negligible.
(ii) If there is an $x\in E$ such that $\mu_{Hr}(E\cap B(x,\delta))>0$
for
every $\delta>0$, then one of these sets has non-negligible complement
in
$E$. (iii) Otherwise, $\mu_{Hr}E=0$.)
\spheader 264Yh Let $(X,\rho)$ be a metric space and $r\ge 0$;
let $\mu_{Hr}$ be
$r$-dimensional Hausdorff measure on $X$. Show that if
$\mu_{Hr}E<\infty$
then $\mu_{Hr}E=\sup\{\mu_{Hr}F:F\subseteq E$ is closed and totally
bounded$\}$. ({\it Hint\/}: given $\epsilon>0$, use 264Yd to find a
closed totally bounded set $F$ such that $\mu_{Hr}(F\setminus E)=0$
and $\mu_{Hr}(E\setminus F)\le\epsilon$, and now apply 264Ye to
$F\setminus E$.)
\spheader 264Yi Let $(X,\rho)$ be a complete metric space and $r\ge 0$;
let $\mu_{Hr}$ be
$r$-dimensional Hausdorff measure on $X$. Show that if
$\mu_{Hr}E<\infty$
then $\mu_{Hr}E=\sup\{\mu_{Hr}F:F\subseteq E$ is compact$\}$.
\spheader 264Yj Let $(X,\rho)$ and $(Y,\sigma)$ be metric spaces. If
$D\subseteq X$ and $\phi:D\to Y$ is a function, then $\phi$ is {\bf
$\gamma$-Lipschitz} if
$\sigma(\phi(x),\phi(x'))\le\gamma\rho(x,x')$ for every $x$, $x'\in D$.
(i) Show that in this case, if $r\ge 0$,
$\mu_{Hr}^*(\phi[A])\le\gamma^r\mu_{Hr}^*A$ for every $A\subseteq D$,
writing $\mu_{Hr}^*$ for $r$-dimensional Hausdorff outer measure on
either $X$ or $Y$. (ii) Show that if $X$ is complete and $\mu_{Hr}E$
is defined
and finite, then $\mu_{Hr}(\phi[E])$ is defined. ({\it Hint\/}:
264Yi.)
\spheader 264Yk Let $(X,\rho)$ be a metric space, and for $r\ge 0$ let
$\mu_{Hr}$ be Hausdorff $r$-dimensional measure on $X$. Show that
there is a unique $\Delta=\Delta(X)\in[0,\infty]$ such that
$\mu_{Hr}X=\infty$ if
$r\in\coint{0,\Delta}$, $0$ if $r\in\ooint{\Delta,\infty}$.
\spheader 264Yl Let $(X,\rho)$ be a metric space and $\phi:I\to X$ a
continuous function, where $I\subseteq\Bbb R$ is an interval. Write
$\mu_{H1}$ for one-dimensional Hausdorff measure on $X$. Show that
\Centerline{$\mu_{H1}(\phi[I])
\le\sup\{\sum_{i=1}^n\rho(\phi(t_i),\phi(t_{i-1})):t_0,\ldots,t_n\in
I,\,t_0\le\ldots\le t_n\}$,}
\noindent the length of the curve $\phi$, with equality if $\phi$ is
injective.
\spheader 264Ym Set $r=\ln 2/\ln 3$, as in 264J, and write
$\mu_{Hr}$ for $r$-dimensional Hausdorff measure on the Cantor set $C$.
Let $\lambda$ be the usual measure on $\{0,1\}^{\Bbb N}$ (254J).
Define $\phi:\{0,1\}^{\Bbb N}\to C$ by setting
$\phi(x)=\bover23\sum_{n=0}^{\infty}3^{-n}x(n)$ for
$x\in\{0,1\}^{\Bbb N}$. Show that $\phi$ is an isomorphism between
$(\{0,1\}^{\Bbb N},\lambda)$ and $(C,\mu_{Hr})$, so that $\mu_{Hr}$ is the
subspace measure on $C$ induced by `Cantor measure' as defined in 256Hc.
\spheader 264Yn Set $r=\ln 2/\ln 3$ and write
$\mu_{Hr}$ for $r$-dimensional Hausdorff measure on the Cantor set $C$.
Let $f:[0,1]\to[0,1]$ be the Cantor function and let $\mu$ be
Lebesgue measure on $\Bbb R$. Show that $\mu f[E]=\mu_{Hr}E$ for every
$E\in\dom\mu_{Hr}$ and $\mu_{Hr}(C\cap f^{-1}[F])=\mu F$ for every
Lebesgue measurable set $F\subseteq[0,1]$.
\spheader 264Yo Let $(X,\rho)$ be a metric space and
$h:\coint{0,\infty}\to\coint{0,\infty}$ a non-decreasing function. For
$A\subseteq X$ set
$$\eqalign{\theta_hA
&=\sup_{\delta>0}\inf\{\sum_{n=0}^{\infty}h(\diam A_n):\sequencen{A_n}
\text{ is a sequence of subsets of }X\cr
&\qquad\qquad\qquad\qquad\qquad\qquad\text{ covering }A,\,\diam
A_n\le\delta
\text{ for every }n\in\Bbb N\},\cr}$$
\noindent interpreting $\diam\emptyset$ as $0$, $\inf\emptyset$ as
$\infty$ as usual. Show that $\theta_h$ is an outer measure on $X$.
State and prove theorems corresponding to 264E and 264F. Look through
264X and 264Y for further results which might be generalizable, perhaps
on the assumption that $h$ is continuous on the right.
\spheader 264Yp Let $(X,\rho)$ be a metric space. Let us say that if
$a<b$ in $\Bbb R$ and $f:[a,b]\to X$ is a function, then $f$ is {\bf
absolutely continuous} if for every $\epsilon>0$ there is a $\delta>0$
such that $\sum_{i=1}^n\rho(f(a_i),f(b_i))\le\epsilon$ whenever
$a\le a_0\le b_0\le\ldots\le a_n\le b_n\le b$ and
$\sum_{i=0}^nb_i-a_i\le\delta$. Show that $f:[a,b]\to X$ is absolutely
continuous iff it is continuous and of bounded variation (in the sense
of 224Ye) and $\mu_{H1}f[A]=0$ whenever $A\subseteq[a,b]$ is Lebesgue
negligible, where $\mu_{H1}$ is 1-dimensional Hausdorff measure on $X$.
(Compare 225M.)
Show that in this case $\mu_{H1}f[\,[a,b]\,]<\infty$.
%- mt26bits
\spheader 264Yq Let $s\ge 1$ be an integer, and $r\in\coint{1,\infty}$.
For $x$, $y\in\BbbR^s$ set $\rho(x,y)=\|x-y\|^{s/r}$. (i) Show that
$\rho$ is a metric on $\BbbR^s$ inducing the Euclidean topology. (ii)
Let $\mu_{Hr}$ be the associated $r$-dimensional Hausdorff measure.
Show that $\mu_{Hr}B(\tbf{0},1)=2^s$.
%264I out of order query
}%end of exercises
\endnotes{