-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIDS.py
31 lines (26 loc) · 1.5 KB
/
IDS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
import yellowbrick as yb
from yellowbrick.features.rankd import Rank1D, Rank2D
from yellowbrick.features.pca import PCADecomposition
from sklearn import preprocessing
Columns = ["duration","protocol_type","service","flag","src_bytes",
"dst_bytes","land","wrong_fragment","urgent","hot","num_failed_logins",
"logged_in","num_compromised","root_shell","su_attempted","num_root",
"num_file_creations","num_shells","num_access_files","num_outbound_cmds",
"is_host_login","is_guest_login","count","srv_count","serror_rate",
"srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate",
"diff_srv_rate","srv_diff_host_rate","dst_host_count","dst_host_srv_count",
"dst_host_same_srv_rate","dst_host_diff_srv_rate","dst_host_same_src_port_rate",
"dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_rate",
"dst_host_rerror_rate","dst_host_srv_rerror_rate","label","difficulty"]
Data = pd.read_csv("KDDTrain+.csv", header=None, names = Columns)
Data.protocol_type = preprocessing.LabelEncoder().fit_transform(Data["protocol_type"])
Data.service = preprocessing.LabelEncoder().fit_transform(Data["service"])
Data.flag = preprocessing.LabelEncoder().fit_transform(Data["flag"])
Data.label = preprocessing.LabelEncoder().fit_transform(Data["label"])
X = Data[Columns].as_matrix()
y = Data.label.as_matrix()
visualizer = Rank1D(features=Columns, algorithm='shapiro')
visualizer.fit(X, y)
visualizer.transform(X)
visualizer.poof()