This repository has been archived by the owner on Apr 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
312 lines (277 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import fasttext
import fasttext.util
import json
import nltk
import pickle
import spacy
import sys
import torch
import torch.cuda
import numpy as np
import pandas as pd
import torch.nn as nn
from bleu import *
from MultiContextTransformer import *
from rouge import *
from slt_data import *
from datetime import datetime
from torch.nn.init import xavier_uniform_
from torch.utils.data import DataLoader
from tqdm import tqdm
nltk.download("punkt")
nltk.download("stopwords")
def load_dictionary(nlp, dataframe, filename: str):
try:
with open(filename, "rb") as fin:
word_dict = pickle.load(fin)
print("Vocabulary dictionary loaded from memory!")
except:
print("Creating vocabulary dictionary!")
word_index = 0
word_dict = {}
for i in tqdm(range(len(dataframe))):
doc = nlp(dataframe.iloc[i]["translation"])
for token in doc:
if token.text not in word_dict:
word_dict[token.text] = word_index
word_index += 1
word_dict["<OOV>"] = len(word_dict) + 1
with open(filename, "wb") as fout:
pickle.dump(word_dict, fout)
return word_dict
def load_embedding_matrix(word_dict, embed_dim: int, filename: str):
try:
embedding_matrix = np.load(filename)
print("Embedding Matrix loaded from memory!")
except:
print("Creating Embedding Matrix!")
ft = fasttext.load_model("cc.de.300.bin")
if embed_dim < 300:
fasttext.util.reduce_model(ft, embed_dim)
embed_dim = embed_dim
max_words = len(word_dict) + 1
embedding_matrix = np.zeros((max_words, embed_dim))
for word, i in tqdm(word_dict.items()):
if i < max_words:
embed_vector = ft.get_word_vector(word)
if embed_vector is not None:
embedding_matrix[i] = embed_vector
np.save(filename, embedding_matrix)
return embedding_matrix
def modify_dataframe(original_filename: str, updated_filename: str):
try:
dataframe = pd.read_csv(updated_filename)
print("Updated dataframe loaded from memory!")
except:
print("Updating dataframe!")
dataframe = pd.read_csv(original_filename, sep="|")
gloss = []
translation = []
for i in range(len(dataframe)):
sentence = dataframe.iloc[i]["orth"]
sentence = "SOS " + sentence + " EOS"
gloss.append(sentence)
sentence = dataframe.iloc[i]["translation"]
sentence = "SOS " + sentence + " EOS"
translation.append(sentence)
dataframe = dataframe.drop(["orth", "translation"], axis=1)
dataframe["translation"] = translation
dataframe["orth"] = gloss
dataframe.drop(columns=["start", "end"], inplace=True)
dataframe.to_csv(updated_filename, index=False)
return dataframe
def sort_dataframe(dataframe: pd.DataFrame):
print("Sorting dataframe !")
seq_lens = []
span8_path = "Span8/span=8_stride=2/"
for i in tqdm(range(len(dataframe))):
row = dataframe.iloc[i]
filename = span8_path + row["name"] + ".pt"
tensor = torch.load(filename)
seq_lens.append(len(tensor))
dataframe["size"] = seq_lens
dataframe.sort_values(by="size", inplace=True)
return dataframe
def load_dataframe(
train_csv: str,
modified_train_csv: str,
dev_csv: str,
modified_dev_csv: str,
merged_csv: str,
use_dev: bool,
):
try:
sorted_dataframe = pd.read_csv(merged_csv)
print("Loaded dataframe from memory!")
except:
if use_dev:
print("Loading dev set")
dev_dataframe = modify_dataframe(dev_csv, modified_dev_csv)
sorted_dataframe = sort_dataframe(dev_dataframe)
else:
print("Loading train set")
train_dataframe = modify_dataframe(train_csv, modified_train_csv)
sorted_dataframe = sorted_dataframe(train_dataframe)
sorted_dataframe.to_csv(merged_csv, index=False)
return sorted_dataframe
def main():
if len(sys.argv) != 2:
print("Pass JSON file of model as argument!")
sys.exit()
filename = sys.argv[1]
with open(filename, "rt") as fjson:
hyper_params = json.load(fjson)
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU")
else:
device = torch.device("cpu")
print("CPU")
nlp = spacy.load("de_core_news_lg")
dataframe = load_dataframe(
train_csv=hyper_params["csv"]["trainDataframePath"],
modified_train_csv=hyper_params["csv"]["modifiedTrainDataframePath"],
dev_csv=hyper_params["csv"]["devDataframePath"],
modified_dev_csv=hyper_params["csv"]["modifiedDevDataframePath"],
merged_csv=hyper_params["csv"]["mergedDataframePath"],
use_dev=hyper_params["csv"]["include_dev"],
)
word_dict = load_dictionary(
nlp, dataframe, hyper_params["pickle"]["vocabDictionaryPath"]
)
if hyper_params["model"]["pretrained"] == True:
print("Loading Embedding Matrix!")
embedding_matrix = load_embedding_matrix(
word_dict,
hyper_params["model"]["embeddingDimensions"],
hyper_params["pickle"]["embeddingFilePath"],
)
else:
print("Embedding Matrix not pretrained!")
embedding_matrix = None
traindataset = SLT_Dataset(
dataframe=dataframe,
word_dict=word_dict,
nlp=nlp,
)
params = {"batch_size": 1, "shuffle": False, "num_workers": 0}
train_gen = DataLoader(traindataset, **params)
vocab_size = len(word_dict) + 1
dmodel_encoder = hyper_params["model"]["dModelEncoder"]
dmodel_decoder = hyper_params["model"]["dModelDecoder"]
nhid_encoder = hyper_params["model"]["nhidEncoder"]
nhid_decoder = hyper_params["model"]["nhidDecoder"]
nlayers_encoder = hyper_params["model"]["numberEncoderLayers"]
nlayers_decoder = hyper_params["model"]["numberDecoderLayers"]
nhead_encoder = hyper_params["model"]["numberHeadsEncoder"]
nhead_decoder = hyper_params["model"]["numberHeadsDecoder"]
dropout = hyper_params["model"]["dropout"]
activation = hyper_params["model"]["activation"]
flag_pretrained = hyper_params["model"]["pretrained"]
flag_continue = hyper_params["training"]["flag_continue"]
concat_input = 3 * dmodel_encoder
concat_output = dmodel_decoder
if hyper_params["csv"]["include_dev"]:
print_flag = 100
else:
print_flag = 1000
model = MultiContextTransformer(
vocab_size=vocab_size,
dmodel_encoder=dmodel_encoder,
dmodel_decoder=dmodel_decoder,
nhid_encoder=nhid_encoder,
nhid_decoder=nhid_decoder,
nlayers_encoder=nlayers_encoder,
nlayers_decoder=nlayers_decoder,
nhead_encoder=nhead_encoder,
nhead_decoder=nhead_decoder,
dropout=dropout,
activation=activation,
embedding_matrix=embedding_matrix,
concat_input=concat_input,
concat_output=concat_output,
pretrained_embedding=flag_pretrained,
device=device,
).to(device)
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(
model.parameters(), lr=hyper_params["training"]["learningRate"]
)
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print("Parameters: ", params)
print("--------------------------------------------")
if flag_continue == True:
print("Model loaded for further training!")
checkpoint = torch.load(
hyper_params["training"]["checkpointFilePathToBeContinued"]
)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
epoch = checkpoint["epoch"]
loss = checkpoint["loss"]
else:
for p in model.parameters():
if p.dim() > 1:
xavier_uniform_(p)
model.train()
for epoch in tqdm(
range(
hyper_params["training"]["start_epoch"],
hyper_params["training"]["end_epoch"] + 1,
)
):
epoch_loss = 0.0
btch = 1
for _, generator_values in enumerate(train_gen):
inputs = generator_values[0]
span8src = inputs[0][0].to(device)
span12src = inputs[1][0].to(device)
span16src = inputs[2][0].to(device)
targets = generator_values[1]
targets = targets.type(torch.LongTensor).to(device)
optimizer.zero_grad()
span8src = span8src.permute(1, 0, 2)
span12src = span12src.permute(1, 0, 2)
span16src = span16src.permute(1, 0, 2)
yhat = model(span8src, span12src, span16src, targets)
targets1 = targets[0, 1:]
targets1 = targets1.reshape(1, targets1.shape[0])
zeros = torch.zeros((1, targets.shape[1]))
zeros[0, :-1] = targets1[0]
modified_targets = zeros.type(torch.LongTensor).to(device)
loss = criterion(yhat, modified_targets)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
torch.cuda.empty_cache()
del inputs, targets
del span8src, span12src, span16src
del yhat, targets1, zeros
del modified_targets
if btch % print_flag == 0:
try:
with open(hyper_params["training"]["logsFilePath"], "at") as file:
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
file.write(
"Epoch: {}, Batch Loss: {}, Epoch Loss: {}, Time: {}\n".format(
epoch, loss.item(), epoch_loss, current_time
)
)
except:
pass
btch += 1
epoch_loss = epoch_loss / (btch - 1)
torch.save(
{
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": epoch_loss,
},
hyper_params["training"]["checkpointFilePath"],
)
if __name__ == "__main__":
main()
print("\n--------------------\nTraining Complete!\n--------------------\n")