forked from TomTomTommi/DeepMIH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
94 lines (73 loc) · 2.07 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# RRDB
nf = 3
gc = 32
# Super parameters
clamp = 2.0
channels_in = 3
log10_lr = -5.0
lr = 10 ** log10_lr
lr3 = 10 ** -5.0
epochs = 50000
weight_decay = 1e-5
init_scale = 0.01
device_ids = [0]
# Super loss
lamda_reconstruction_1 = 2
lamda_reconstruction_2 = 2
lamda_guide_1 = 1
lamda_guide_2 = 1
lamda_low_frequency_1 = 1
lamda_low_frequency_2 = 1
use_imp_map = True
optim_step_1 = True
optim_step_2 = True
optim_step_3 = True
# Train:
batch_size = 24
cropsize = 128
betas = (0.5, 0.999)
weight_step = 200
gamma = 0.98
# Val:
cropsize_val_coco = 256
cropsize_val_imagenet = 256
cropsize_val_div2k = 1024
batchsize_val = 3
shuffle_val = False
val_freq = 1
# Dataset
Dataset_mode = 'COCO' # COCO / DIV2K /
Dataset_VAL_mode = 'DIV2K' # COCO / DIV2K / ImageNet
TRAIN_PATH_DIV2K = '/media/disk2/jjp/jjp/Dataset/DIV2K/DIV2K_train_HR/'
VAL_PATH_DIV2K = '/media/disk2/jjp/jjp/Dataset/DIV2K/DIV2K_valid_HR/'
VAL_PATH_COCO = '/media/disk2/jjp/jjp/Dataset/COCO/val2017/'
TEST_PATH_COCO = '/media/disk2/jjp/jjp/Dataset/COCO/test2017/'
VAL_PATH_IMAGENET = '/media/data/jjp/Imagenet/ILSVRC2012_img_val'
# Display and logging:
loss_display_cutoff = 2.0 # cut off the loss so the plot isn't ruined
loss_names = ['L', 'lr']
silent = False
live_visualization = False
progress_bar = False
# Saving checkpoints:
MODEL_PATH = ''
checkpoint_on_error = True
SAVE_freq = 1
TEST_PATH = '/home/jjp/DeepMIH/image/'
TEST_PATH_cover = TEST_PATH + 'cover/'
TEST_PATH_secret_1 = TEST_PATH + 'secret_1/'
TEST_PATH_secret_2 = TEST_PATH + 'secret_2/'
TEST_PATH_steg_1 = TEST_PATH + 'steg_1/'
TEST_PATH_steg_2 = TEST_PATH + 'steg_2/'
TEST_PATH_secret_rev_1 = TEST_PATH + 'secret-rev_1/'
TEST_PATH_secret_rev_2 = TEST_PATH + 'secret-rev_2/'
TEST_PATH_imp_map = TEST_PATH + 'imp-map/'
# Load:
suffix_load = ''
tain_next = False
trained_epoch = 3000
pretrain = True
PRETRAIN_PATH = '/home/jjp/DeepMIH/model/'
suffix_pretrain = 'model_checkpoint_03000'
PRETRAIN_PATH_3 = '/home/jjp/DeepMIH/model/'
suffix_pretrain_3 = 'model_checkpoint_03000'