forked from philayres/babble-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_utils.py
324 lines (254 loc) · 9.75 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import sys
import os
from keras.models import load_model
from keras.utils import plot_model
from custom_objects import CustomObjects
from model_def import ModelDef
from run_config import RunConfig
import datetime
Train=1
Generate=2
class ModelUtils(object):
iteration = 0
config = None
mode = Train
model_filename = ""
model_tag = ""
testdata_filename = ""
output_dir = ""
h5_model_filename = ""
h5_weights_filename = ""
output_fn = ""
output_file = None
csv_logger_fn = ""
csv_logger = None
logfile_fn = ""
logfile = None
iteration_counter_fn = None
model_def = None
one_off_generate_len = None
load_weights = None
def __init__(self):
self.buffered_logs = []
self.log("====================================================")
self.log("Started New Run at:", datetime.datetime.now())
self.log("PID:", os.getpid())
self.log("====================================================")
if len(sys.argv) < 2:
print("training usage: lstm_c2_generation <tagname> [test data filename>] [load model filename]")
print("for example\n lstm_c2_generation test1 test/LDC97S44-8k.c2cb")
print("if test data filename or load model filename are excluded, the settings in config.json will be used if it exists")
print("if load model filename is set to 'none' then the coded model definition will be used, regardless of what is set in the config.json file.\n")
print("generator usage: lstm_c2_generation [tagname] --generate=<base filename> [--seed_index=<'random'|frame num|time in seconds>] [--generate-len=<frames>] <test data filename> <load model filename>")
PRINT("loading weights: lstm_c2_generation [tagname] --load-weights=<path to .h5 file> <test data filename> <load model filename>")
print("for example\n lstm_c2_generation --generate=audiofile --seed_index=60s --generate-len=500 test/LDC97S44-8k.c2cb out/realmodel/model-600.h5")
exit()
named_args = {}
basic_args = []
self.named_args = named_args
self.basic_args = basic_args
print('arguments:', sys.argv)
for i, arg in enumerate(sys.argv[1:]):
self.log('arg', i, arg)
print('arg', 1, arg)
if arg[0:2] == "--":
a = arg.split("=")
key = a[0][2:]
named_args[key] = a[1]
else:
basic_args.append(arg)
if named_args.get('generate', None):
self.generate_name = named_args['generate']
self.mode = Generate
self.model_tag = basic_args[0]
self.log("mode: Generate")
else:
self.model_tag = basic_args[0]
self.mode = Train
self.log("mode: Train")
if self.training_mode():
self.output_dir="out/"+str(self.model_tag)+"/"
self.output_fn=self.output_dir+"out-c2cb-"
try:
os.makedirs(self.output_dir)
except OSError:
print("the tag ", self.model_tag, " has been used")
print("continuing where we left off")
else:
self.output_dir="out/"+str(self.model_tag)+"/"
self.output_fn="generated/"+str(self.generate_name)
self.config = RunConfig(self)
if len(basic_args) > 1:
self.testdata_filename = basic_args[1]
self.config.test_data_fn = self.testdata_filename
self.log("using command line test data filename:", self.config.test_data_fn)
if len(basic_args) > 2:
self.model_filename = basic_args[2]
#self.log("using command line model filename:",self.model_filename)
else:
self.model_filename = self.config.model_filename
#self.log("using configured model_filename:",self.config.model_filename)
if named_args.get('generate-len', None):
self.config.one_off_generate_len = int(named_args['generate-len'])
if named_args.get('load-weights', None):
self.load_weights = named_args['load-weights']
self.log("loading weights from a weights file:", self.load_weights)
self.model_filename = 'none'
else:
self.log("not loading weights from a weights file")
self.h5_model_filename=self.output_dir+"model-"
self.h5_weights_filename=self.output_dir+"weights-"
if self.training_mode():
from keras.callbacks import CSVLogger
self.csv_logger_fn = self.output_dir + 'training.log'
self.csv_logger = CSVLogger(self.csv_logger_fn, append=True)
self.iteration_counter_fn = self.output_dir + "iteration_counter"
self.gen_counter_fn = self.output_dir + "gen_counter"
self.logfile_fn = self.output_dir + "log"
self.logfile = open(self.logfile_fn, "a", 1)
def setup_seed_start(self, generator):
if self.named_args.get('seed_index', None):
seed_index = self.named_args['seed_index']
if seed_index == 'random':
self.log("Setting seed start index to 'random'")
generator.set_random_seed_start_index()
elif seed_index.find('s') > 0:
self.log("Setting seed start index to:", seed_index)
seed_index = seed_index[0:-1]
generator.set_time_seed_start_index(int(seed_index))
else:
self.log("Setting seed start index to:", seed_index)
generator.set_frame_seed_start_index(int(seed_index))
def load_model(self):
self.log("loading model: " + self.model_filename)
self.model_def.model = load_model(self.model_filename, custom_objects=self.custom_objects())
if self.training_mode():
self.log("saving config after loading model")
self.config.model_filename = self.model_filename
self.config.save_config()
else:
self.log("not saving config after loading model")
self.log_model_summary()
return self.model_def.model
def save_json_model(self, update_num=0):
model = self.model_def.model
json_string = model.to_json()
print("saving json model")
n = "jmodel-"+str(update_num)+".json"
mfile= open(self.output_dir + n, "w")
mfile.write(json_string)
mfile.close
def save_h5_model(self, iteration):
model = self.model_def.model
fn = self.h5_model_filename+str(iteration)+".h5"
res = model.save(fn)
self.config.model_filename = fn
self.write_iteration_count(iteration)
self.config.save_config()
#plot_model(model, to_file=self.output_dir+'vis-model-'+str(iteration)+'.png')
return res
def save_weights(self, iteration):
model = self.model_def.model
return model.save_weights(self.h5_weights_filename+str(iteration)+".h5")
def open_output_file(self, iteration, output_index=None):
if self.training_mode():
output_fn = self.output_fn+str(iteration)
else:
output_fn = self.output_fn
if output_index is not None:
output_fn += '_' + str(output_index)
self.output_file = open(output_fn, "wb")
return output_fn
def after_iteration(self, iteration):
#self.write_iteration_count(self, iteration)
return
def write_iteration_count(self, iteration):
self.config.start_iteration = iteration
with open(self.iteration_counter_fn, "w") as f:
f.write(str(iteration))
def write_gen_count(self, iteration):
with open(self.gen_counter_fn, "w") as f:
f.write(str(iteration))
def read_iteration_count(self):
res = []
if self.iteration_counter_fn and os.path.isfile(self.iteration_counter_fn):
with open(self.iteration_counter_fn) as f:
res = f.readlines()
if len(res) == 1:
i = int(res[0])
self.iteration = i
self.log("Continuing from a previous run at iteration: ", i)
return i
else:
self.iteration = 0
self.log("No iteration file found. Setting to 0.")
return 0
def log(self, *inargs):
if self.logfile == None:
args = []
for a in inargs:
args.append(str(a))
print(str(a)),
print
self.buffered_logs.append(str.join(" ", args) + "\n")
return
elif len(self.buffered_logs) > 0:
for s in self.buffered_logs:
print(s)
self.logfile.write(s)
self.logfile.flush()
self.buffered_logs = []
try:
for arg in inargs:
self.logfile.write(str(arg)+" ")
print(str(arg)),
print
self.logfile.write("\n")
self.logfile.flush()
except IOError:
print("* Logging Failed *")
for arg in inargs:
print(str(arg)),
print
def signal_handler(self, signal, frame):
self.log('Interrupt signal caught. Closing gracefully. Iteration:', self.iteration)
self.write_iteration_count(self.iteration)
print("saving .h5 model file")
self.save_h5_model(self.iteration)
print("saving .h5 weights file")
self.save_weights(self.iteration)
print("exiting now")
self.logfile.close()
sys.exit(0)
def custom_objects(self):
return {
"CustomObjects": CustomObjects,
"codec2_param_error": CustomObjects.codec2_param_error,
"codec2_param_error_td": CustomObjects.codec2_param_error_td
}
def test_seed_data(self, all_frames, start_index):
self.open_output_file(0)
seed_frame_seq = all_frames[start_index: start_index + frame_seq_len]
for frame in seed_frame_seq:
self.output_file.write(sample(frame))
self.output_file.close()
def define_or_load_model(self, frame_seq_len, framelen, num_frame_seqs):
self.model_def = ModelDef(self, self.config)
if len(self.model_filename) > 0 and self.model_filename != 'none' and self.model_filename != 'None':
model = self.load_model()
self.save_json_model()
else:
self.log("creating new model")
model = self.model_def.define_model(frame_seq_len, framelen, num_frame_seqs)
self.save_json_model()
if self.load_weights != None:
self.model_def.load_weights(self.load_weights, by_name=True)
return self.model_def
def training_mode(self):
return self.mode == Train
def generate_mode(self):
return self.mode == Generate
def setup_config(self):
return self.config
def log_model_summary(self):
self.model_def.model.summary()