Skip to content

Latest commit

 

History

History
75 lines (62 loc) · 4.41 KB

README.md

File metadata and controls

75 lines (62 loc) · 4.41 KB

for Deep Learning

Build Status Documentation Status GitHub license

banner

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of symbolic programming and imperative programming to maximize efficiency and productivity. In its core, a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. The library is portable and lightweight, and it scales to multiple GPUs and multiple machines.

MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning system, and interesting insights of DL systems for hackers.

Join the chat at https://gitter.im/dmlc/mxnet

What's New

Contents

Features

  • Design notes providing useful insights that can re-used by other DL projects
  • Flexible configuration for arbitrary computation graph
  • Mix and match good flavours of programming to maximize flexibility and efficiency
  • Lightweight, memory efficient and portable to smart devices
  • Scales up to multi GPUs and distributed setting with auto parallelism
  • Support for python, R, C++ and Julia
  • Cloud-friendly and directly compatible with S3, HDFS, and Azure

Ask Questions

  • Please use mxnet/issues for how to use mxnet and reporting bugs

License

© Contributors, 2015-2016. Licensed under an Apache-2.0 license.

Reference Paper

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015

History

MXNet is initiated and designed in collaboration by the authors of cxxnet, minerva and purine2. The project reflects what we have learnt from the past projects. It combines important flavours of the existing projects for efficiency, flexibility and memory efficiency.