-
Notifications
You must be signed in to change notification settings - Fork 19
/
makewavelets.py
72 lines (66 loc) · 1.86 KB
/
makewavelets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pywt
import numpy
def genwavelet(name):
D = pywt.Wavelet(name)
phi, psi, x = D.wavefun(level=8)
phi = (phi[1:] + phi[:-1]) * 0.5
i = 0
while abs(phi[i]) < 2e-3:
i += 1
phi = phi[i:]
i = len(phi)
while abs(phi[i - 1]) < 2e-3:
i = i - 1
support = int(numpy.ceil(x[i]))
i = (x < support).sum()
phi = phi[:i //4 * 4 + 4]
print(name, support)
numbers = ["%.8f, %.8f, %.8f, %.8f" % tuple(a) for a in phi.reshape(-1, 4)]
step = numpy.diff(x).mean()
template = """
static double _%(funcname)s_table[] = %(table)s;
static double _%(funcname)s_nativesupport = %(support)g;
static double _%(funcname)s_kernel(double x)
{
x += %(hsupport)g;
double f = x / %(step)e;
if (f < 0) return 0;
int i = f;
f -= i;
if (i >= %(tablesize)d - 1) return 0;
return _%(funcname)s_table[i] * (1 - f)
+ _%(funcname)s_table[i + 1] * f;
}
static double _%(funcname)s_diff(double x)
{
x += %(hsupport)g;
int i = x / %(step)e;
if (i < 0) return 0;
if (i >= %(tablesize)d - 1) return 0;
double f0 = _%(funcname)s_table[i];
double f1 = _%(funcname)s_table[i + 1];
return (f1 - f0) / %(step)e;
}
"""
return template % {
'table' : "{\n" + ",\n".join(numbers) + "}",
'hsupport' : support * 0.5,
'support' : support,
'funcname' : name,
'step' : step,
'tablesize' : len(phi),
}
with open('pmesh/_window_wavelets.h', 'wt') as f:
f.write("""
/*
* do not modify this file
* generated by makewavelets.py
*
*/
""")
f.write(genwavelet('sym6'))
f.write(genwavelet('sym12'))
f.write(genwavelet('sym20'))
f.write(genwavelet('db6'))
f.write(genwavelet('db12'))
f.write(genwavelet('db20'))