-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCproceduresparsity.m
61 lines (55 loc) · 2.93 KB
/
MCproceduresparsity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function [resultsMCsparsity]=MCproceduresparsity(x,dimx,dimy,dimt,reglambda,approach,sparsities,numberofrep);
% Monte Carlo procedure for sparsity.
% INPUT
% x: MV-pattern matrix of interest for the input region
% dimx: number of voxels in the ROIX
% dimt: number of stimuli
% reglambda: regulariation parameters
% approach: 1 means using the optimal lambda obtained on real
% data, while 0 means using lambdas in the set given as input
% sparsities: percentages of sparsity to simulate
% numberofrep: number of simulations for each investigated level of
% sparsity and noise
% OUTPUT
% resultsMCsparsity: structure with goodness-of-fit, density curve and its rate of decay
% Alessio Basti 20/02/2019 (Basti et al. 2019)
gammas=0:0.1:0.9;
totalns=numberofrep*numel(gammas)*numel(sparsities)*size(x,2)*2;
count=0;
for mruns=1:2
for nsubj=1:size(x,2)
X=x{mruns,nsubj};
for jrep=1:numberofrep
for kgam=1:numel(gammas)
for ispar=1:numel(sparsities)
clearvars -except x X gammas sparsities reglambda approach indexesr indexesc dimt dimx dimy numberofrep ispar kgam jrep mruns nsubj resultsMCsparsity count totalns
% simulate transformation and MV-patterns of the ROIY
T=simulsparsematrix(dimx,dimy,sparsities(ispar));
noise=randn(dimy,dimt);
y=(1-gammas(kgam))*T*X/norm(T*X,'fro')+gammas(kgam)*noise/norm(noise,'fro');
for i=1:size(y,2)
y(:,i)=(y(:,i)-mean(y(:,i)))/std(y(:,i));
end
% computation of the estimated transformation and GOF
if(approach==1)
[Ttilde,optlambda,gof]=ridgeregmethod(X,y,reglambda.optimal(nsubj,mruns));
elseif(approach==0)
[Ttilde,optlambda,gof]=ridgeregmethod(X,y,reglambda.set);
end
% computation of the density curve and of its rate of
% decay
[rdd,density]=sparsityfeatures(Ttilde,X,y);
% create a structure cointaining: the goodness-of-fit, the
% density curve and its rate of decay
resultsMCsparsity.gof(ispar,kgam,1:100,jrep+numberofrep*(nsubj-1)+(mruns-1)*numberofrep*size(x,2))=gof;
resultsMCsparsity.rdd(ispar,kgam,jrep+numberofrep*(nsubj-1)+(mruns-1)*numberofrep*size(x,2))=rdd;
resultsMCsparsity.density(ispar,kgam,1:100,jrep+numberofrep*(nsubj-1)+(mruns-1)*numberofrep*size(x,2))=density;
count=count+1;
100*(count)/totalns
end
end
end
end
end
resultsMCsparsity.analysedpercofsparsity=sparsities;
return