forked from victoroliv2/halide-casestudies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_halide.cpp
371 lines (280 loc) · 11 KB
/
main_halide.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#include "Halide.h"
using namespace Halide;
#include "image_io.h"
#include <iostream>
#include <limits>
#include <cfloat>
#include <sys/time.h>
#define NTRIES 10
double now() {
struct timeval tv;
gettimeofday(&tv, NULL);
static bool first_call = true;
static time_t first_sec = 0;
if (first_call) {
first_call = false;
first_sec = tv.tv_sec;
}
assert(tv.tv_sec >= first_sec);
return (tv.tv_sec - first_sec) + (tv.tv_usec / 1000000.0);
}
Expr lerp(Expr a, Expr b, Expr alpha) {
return (1.0f - alpha)*a + alpha*b;
}
Expr copysign(Expr mag, Expr sig)
{
Expr s = select(sig < 0.0f, -1.0f, 1.0f);
return abs(mag) * s;
}
struct Stats
{
float min;
float max;
float elapsed[NTRIES];
Stats(){
min = FLT_MAX;
max = -FLT_MAX;
for (int k=0; k<NTRIES; k++) elapsed[k] = FLT_MAX;
}
};
#define TIME_START(st) \
{ \
double start = now(); \
{
#define TIME_END(st, i) \
} \
double end = now(); \
\
st.elapsed[i] = end - start; \
if (st.elapsed[i] < st.min) st.min = st.elapsed[i]; \
if (st.elapsed[i] > st.max) st.max = st.elapsed[i]; \
}
Var x("x"), y("y"), z("z"), c("c"), k("k");
int main(int argc, char * argv[])
{
assert(argc == 2);
struct Stats lab_time, mb_time, unsharp_time, bf_time;
Image<float> input = load<float>(argv[1]);
printf("(%d %d %d)\n", input.width(), input.height(), input.channels());
Func clamped("clamped");
clamped(x, y, c) = input(clamp(x, 0, input.width() - 1), clamp(y, 0, input.height() - 1), c);
Func cielab("cielab");
{
Var tx("tx"), ty("ty"), xi("xi"), yi("yi");
Func gamma("gamma");
gamma(x,y,c) = 100.0f * select(input(x,y,c) > 0.04045f, pow(((input(x,y,c) + 0.055f) / 1.055f), 2.4f),
input(x,y,c) / 12.92f);
Func xyz("xyz");
Expr X = (gamma(x,y,0) * 0.4124f + gamma(x,y,1) * 0.3576f + gamma(x,y,2) * 0.1805f) / 95.047f;
Expr Y = (gamma(x,y,0) * 0.2126f + gamma(x,y,1) * 0.7152f + gamma(x,y,2) * 0.0722f) / 100.000f;
Expr Z = (gamma(x,y,0) * 0.0193f + gamma(x,y,1) * 0.1192f + gamma(x,y,2) * 0.9505f) / 108.883f;
X = select(X > 0.008856f, pow(X, 1.0f/3.0f), ( 7.787f * X ) + ( 16.0f / 116.0f ));
Y = select(Y > 0.008856f, pow(Y, 1.0f/3.0f), ( 7.787f * Y ) + ( 16.0f / 116.0f ));
Z = select(Z > 0.008856f, pow(Z, 1.0f/3.0f), ( 7.787f * Z ) + ( 16.0f / 116.0f ));
xyz(x,y,c) = select(c == 0, X,
select(c == 1, Y,
Z));
Expr CIEL = ( 116.0f * xyz(tx,ty,1) ) - 16.0f;
Expr CIEa = 500.0f * ( xyz(tx,ty,0) - xyz(tx,ty,1) );
Expr CIEb = 200.0f * ( xyz(tx,ty,1) - xyz(tx,ty,2) );
cielab(tx,ty,c) = select(c == 0, CIEL,
select(c == 1, CIEa,
select(c == 2, CIEb,
input(tx,ty,3))));
if (use_gpu())
{
cielab.reorder(c,tx,ty).unroll(c, 4).root().cudaTile(tx,ty,16,16);
}
else
{
// cielab.vectorize(tx, 4).reorder(c,tx,ty).unroll(c, 4).root().parallel(ty);
gamma.chunk(tx).vectorize(x, 4).reorder(c, x, y).unroll(c, 3);
xyz.chunk(tx).vectorize(x, 4).reorder(c, x, y).unroll(c, 3);
cielab.tile(tx, ty, xi, yi, 128, 32).vectorize(xi, 4).reorder(xi, yi, c, tx, ty);
cielab.parallel(ty);
}
}
Func motion_blur("motion_blur");
float length = 10.0f;
float angle = 45.0f;
{
Func acc_mb("acc_mb"), output("output");
float theta = angle * (float)M_PI / 180.0f;
float offset_x = length * std::cos(theta);
float offset_y = length * std::sin(theta);
int num_steps = (int)(length+0.5f) + 1;
Var tx("tx"), ty("ty"), xi("xi"), yi("yi");
RDom step(0, num_steps);
Expr t = (num_steps == 1)? 0.0f : step / (float)(num_steps - 1) - 0.5f;
Expr xx = x + t * offset_x;
Expr yy = y + t * offset_y;
Expr dx = xx - floor(xx);
Expr dy = yy - floor(yy);
Expr ix = cast<int>(xx);
Expr iy = cast<int>(yy);
Expr mixy0 = dy * (clamped(ix, iy+1,c) - clamped(ix, iy,c)) + clamped(ix, iy,c);
Expr mixy1 = dy * (clamped(ix+1,iy+1,c) - clamped(ix+1,iy,c)) + clamped(ix+1,iy,c);
acc_mb(x,y,c) += dx * (mixy1 - mixy0) + mixy0;
motion_blur(x,y,c) = acc_mb(x,y,c) / float(num_steps);
if (use_gpu())
{
acc_mb.reorder(c,x,y).root().cudaTile(x,y,16,16);
acc_mb.update().reorder(step,c,x,y).root().cudaTile(x,y,16,16);
motion_blur.reorder(c,x,y).root().cudaTile(x,y,16,16);
}
else
{
//acc_mb.update().reorder(c,x,y).chunk(x).vectorize(c, 4);
//motion_blur.tile(x, y, xi, yi, 128, 32).parallel(y).vectorize(xi, 4);
// motion_blur.split(y, y, yi, 4).parallel(y).vectorize(x, 4);
// acc_mb.chunk(y, yi)/* .reorder(c,x,y) */.vectorize(x, 4);
motion_blur.root().reorder(c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
acc_mb.update().reorder(c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
}
}
Func unsharped_mask("unsharp_mask");
{
float sigma = 1.5f;
Uniform<float> detail_thresh = 0.5f;
Uniform<float> sharpen = 0.5f;
Func gaussian("gaussian");
gaussian(x) = exp(-(x/sigma)*(x/sigma)*0.5f);
// truncate to 3 sigma and normalize
int radius = int(3*sigma + 1.0f);
RDom i(-radius, 2*radius+1);
Func normalized("normalized");
normalized(x) = gaussian(x) / sum(gaussian(i)); // Uses an inline reduction
// Convolve the input using two reductions
Func blurx("blurx");
Func blury("blury");
blurx(x, y, c) += clamped(x+i, y, c) * normalized(i);
blury(x, y, c) += blurx(x, y+i, c) * normalized(i);
Func detail("detail");
detail(x, y, c) = blury(x, y, c) - clamped(x, y, c);
unsharped_mask(x, y, c) = clamped(x, y, c) + select(detail(x, y, c) > detail_thresh,
sharpen * copysign(max(abs(detail(x,y,c)) - detail_thresh, 0.0f), detail(x,y,c)),
0.0f);
if (use_gpu())
{
normalized.root().cudaTile(x,2);
blurx.root().cudaTile(x,y,16,16);
blury.root().cudaTile(x,y,16,16);
blurx.update().root().reorder(i,c,x,y).cudaTile(x,y,16,16);
blury.update().root().reorder(i,c,x,y).cudaTile(x,y,16,16);
unsharped_mask.root().reorder(c,x,y).cudaTile(x,y,16,16);
}
else
{
normalized.root();
blurx.update().root().reorder(i,c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
blury.update().root().reorder(i,c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
detail.root().reorder(c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
unsharped_mask.root().reorder(c,x,y).parallel(y).unroll(c,4).vectorize(x, 4);
}
}
Uniform<float> r_sigma = 0.05f;
int s_sigma = 8;
Func smoothed("smoothed");
{
// Construct the bilateral grid
RDom r(0, s_sigma, 0, s_sigma);
Expr val = clamped(x * s_sigma + r.x - s_sigma/2, y * s_sigma + r.y - s_sigma/2, c);
val = clamp(val, 0.0f, 1.0f);
Expr zi = cast<int>(val * (1.0f/r_sigma) + 0.5f);
Func grid("grid");
grid(x, y, zi, c, k) += select(k == 0, val, 1.0f);
// Blur the grid using a five-tap filter
Func blurx("blurx"), blury("blury"), blurz("blurz");
blurx(x, y, z, c, k) = grid(x-1, y, z , c, k) + grid(x, y, z, c, k)*4.0f + grid(x+1, y, z, c, k);
blury(x, y, z, c, k) = blurx(x, y-1, z , c, k) + blurx(x, y, z, c, k)*4.0f + blurx(x, y+1, z, c, k);
blurz(x, y, z, c, k) = blury(x, y, z-1, c, k) + blury(x, y, z, c, k)*4.0f + blury(x, y, z+1, c, k);
// Take trilinear samples to compute the output
val = clamp(clamped(x, y, c), 0.0f, 1.0f);
Expr zv = val * (1.0f/r_sigma);
zi = cast<int>(zv);
Expr zf = zv - zi;
Expr xf = cast<float>(x % s_sigma) / s_sigma;
Expr yf = cast<float>(y % s_sigma) / s_sigma;
Expr xi = x/s_sigma;
Expr yi = y/s_sigma;
Func interpolated("interpolated");
interpolated(x, y, c, k) =
lerp(lerp(lerp(blurz(xi, yi, zi , c, k), blurz(xi+1, yi, zi , c, k), xf),
lerp(blurz(xi, yi+1, zi , c, k), blurz(xi+1, yi+1, zi , c, k), xf), yf),
lerp(lerp(blurz(xi, yi, zi+1, c, k), blurz(xi+1, yi, zi+1, c, k), xf),
lerp(blurz(xi, yi+1, zi+1, c, k), blurz(xi+1, yi+1, zi+1, c, k), xf), yf), zf);
// Normalize
smoothed(x, y, c) = interpolated(x, y, c, 0)/interpolated(x, y, c, 1);
if (use_gpu())
{
//OK
Var gridz;
gridz = grid.arg(2);
grid.root().cudaTile(x, y, 16, 16);
grid.update().reorder(k, c, x, y).root().cudaTile(x, y, 16, 16);
blurx.root().reorder(k, c, x, y).cudaTile(x, y, 8, 8);
blury.root().reorder(k, c, x, y).cudaTile(x, y, 8, 8);
blurz.root().reorder(k, c, x, y).cudaTile(x, y, 8, 8);
smoothed.root().cudaTile(x, y, s_sigma, s_sigma);
}
else
{
//OK
grid.root().parallel(z);
grid.update().reorder(k, c, x, y).parallel(y);
blurx.root().parallel(z).vectorize(x, 4);
blury.root().parallel(z).vectorize(x, 4);
blurz.root().parallel(z).vectorize(x, 4);
smoothed.root().parallel(y).vectorize(x, 4);
}
}
{
cielab.compileJIT();
motion_blur.compileJIT();
unsharped_mask.compileJIT();
smoothed.compileJIT();
}
for(int k=0; k<NTRIES; k++)
{
Image<float> out (input.width(), input.height(), input.channels());
TIME_START(lab_time)
input.markHostDirty(); /* copy CPU -> GPU */
cielab.realize(out);
out.copyToHost(); /* copy GPU -> CPU */
TIME_END(lab_time, k)
}
for(int k=0; k<NTRIES; k++)
{
Image<float> out (input.width(), input.height(), input.channels());
TIME_START(mb_time)
input.markHostDirty(); /* copy CPU -> GPU */
motion_blur.realize(out);
out.copyToHost(); /* copy GPU -> CPU */
TIME_END(mb_time, k)
}
for(int k=0; k<NTRIES; k++)
{
Image<float> out (input.width(), input.height(), input.channels());
TIME_START(unsharp_time)
input.markHostDirty(); /* copy CPU -> GPU */
unsharped_mask.realize(out);
out.copyToHost(); /* copy GPU -> CPU */
TIME_END(unsharp_time, k)
}
for(int k=0; k<NTRIES; k++)
{
Image<float> out (input.width(), input.height(), input.channels());
TIME_START(bf_time)
input.markHostDirty(); /* copy CPU -> GPU */
/* there is some memory leak */
smoothed.realize(out);
out.copyToHost(); /* copy GPU -> CPU */
TIME_END(bf_time, k)
}
printf("[Halide]\n");
printf("- CIELAB: %lf \n", lab_time.min);
printf("- MOTION-BLUR: %lf \n", mb_time.min);
printf("- UNSHARP-MASK: %lf \n", unsharp_time.min);
printf("- BIL. FILTER: %lf \n", bf_time.min);
return 0;
}