-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
79 lines (58 loc) · 1.94 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from __future__ import division, print_function
import sys
import os
import glob
import re
import numpy as np
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from flask import Flask, redirect, url_for, request, render_template
# Define a flask app
app = Flask(__name__)
dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, "Pneumonia-DENSENET.h5")
model = load_model(filename) # Necessary
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = x / 255.0
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/base.html',methods=['GET'])
def base():
return render_template('base.html')
@app.route('/index.html',methods=['GET'])
def home():
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path, model)
# Process your result for human
# pred_class = preds.argmax(axis=-1) # Simple argmax
pred_class = preds.argmax(axis = 1) # ImageNet Decode
if(pred_class[0] == 0):
answer = "Normal"
else:
answer = "Pneumonia"
result = answer # Convert to string
return result
return None
if __name__ == '__main__':
app.run(debug=True)