Skip to content

Latest commit

 

History

History
75 lines (47 loc) · 2.31 KB

README.md

File metadata and controls

75 lines (47 loc) · 2.31 KB

restaurant-finder-TW

Brief Introduction

A simplified Google Map that considers traffic costs based on current location and provides more appropriate search functions.

Different from the past, which only displayed the distance, it has been changed to use a more intuitive traffic time.


System Component

  • Frontend : HTML, CSS, Bootstrap
  • Backend : Flask, sqlAlchemy
  • Database : google cloud sql (postgreSQL)
  • Service : google map API (Distance Matrix API, Places API)

Prerequisite

1. Prepare Python Environment

Create a virtual environment :

python -m venv <environment path>

Download library :

pip install -r requirement.txt

2. Create google cloud sql instances

Read Reference 1, Section : Create and manage---instances.


3. Setup google map API

  1. Distance Matrix API -> Read Reference 2, Section : setup.

  2. Places API -> Read Reference 3, Section : setup.

4. Update ./hunter/config.py

  1. set apiKey_file_path
  2. set GOOGLE_APPLICATION_CREDENTIALS key file(json)
  3. set database connection information (user, password, db, etc.)

5. Create table and import data for database

You can use goole cloud sql interface to import data.Or use pgAdmin (video reference)

  1. Run "./hunter/connectDB.py" to create all the table what you need.

  2. import "./dataset/location.csv" for location table.

  3. import "./dataset/restaurant.csv" and "./dataset/TaipeiRest.csv" to restaurant table.

  4. Run "Preprocessing.py" to preprocess data and get park data(If you don't have park data).


Reference

  1. Use python to connect cloud sql (postgreSQL)
  2. Distance API document
  3. Place AP document

ER diagram

ER

Relational schema diagram

Relational

Example

show

park