forked from w8r/graphology-layout-forceatlas2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiterate.js
818 lines (662 loc) · 25.6 KB
/
iterate.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
/* eslint no-constant-condition: 0 */
/**
* Graphology ForceAtlas2 Iteration
* =================================
*
* Function used to perform a single iteration of the algorithm.
*/
/**
* Matrices properties accessors.
*/
var NODE_X = 0,
NODE_Y = 1,
NODE_DX = 2,
NODE_DY = 3,
NODE_OLD_DX = 4,
NODE_OLD_DY = 5,
NODE_MASS = 6,
NODE_CONVERGENCE = 7,
NODE_SIZE = 8,
NODE_FIXED = 9;
var EDGE_SOURCE = 0,
EDGE_TARGET = 1,
EDGE_WEIGHT = 2;
var REGION_NODE = 0,
REGION_CENTER_X = 1,
REGION_CENTER_Y = 2,
REGION_SIZE = 3,
REGION_NEXT_SIBLING = 4,
REGION_FIRST_CHILD = 5,
REGION_MASS = 6,
REGION_MASS_CENTER_X = 7,
REGION_MASS_CENTER_Y = 8;
var SUBDIVISION_ATTEMPTS = 3;
/**
* Constants.
*/
var PPN = 10,
PPE = 3,
PPR = 9;
var MAX_FORCE = 10;
/**
* Function used to perform a single interation of the algorithm.
*
* @param {object} options - Layout options.
* @param {Float32Array} NodeMatrix - Node data.
* @param {Float32Array} EdgeMatrix - Edge data.
* @return {object} - Some metadata.
*/
module.exports = function iterate(options, NodeMatrix, EdgeMatrix) {
// Initializing variables
var l, r, n, n1, n2, e, w, g;
var order = NodeMatrix.length,
size = EdgeMatrix.length;
var outboundAttCompensation,
coefficient,
xDist,
yDist,
ewc,
distance,
factor;
var RegionMatrix = [];
// 1) Initializing layout data
//-----------------------------
// Resetting positions & computing max values
for (n = 0; n < order; n += PPN) {
NodeMatrix[n + NODE_OLD_DX] = NodeMatrix[n + NODE_DX];
NodeMatrix[n + NODE_OLD_DY] = NodeMatrix[n + NODE_DY];
NodeMatrix[n + NODE_DX] = 0;
NodeMatrix[n + NODE_DY] = 0;
}
// If outbound attraction distribution, compensate
if (options.outboundAttractionDistribution) {
outboundAttCompensation = 0;
for (n = 0; n < order; n += PPN) {
outboundAttCompensation += NodeMatrix[n + NODE_MASS];
}
outboundAttCompensation /= order;
}
// 1.bis) Barnes-Hut computation
//------------------------------
if (options.barnesHutOptimize) {
// Setting up
var minX = Infinity,
maxX = -Infinity,
minY = Infinity,
maxY = -Infinity,
q, q2, subdivisionAttempts;
// Computing min and max values
for (n = 0; n < order; n += PPN) {
minX = Math.min(minX, NodeMatrix[n + NODE_X]);
maxX = Math.max(maxX, NodeMatrix[n + NODE_X]);
minY = Math.min(minY, NodeMatrix[n + NODE_Y]);
maxY = Math.max(maxY, NodeMatrix[n + NODE_Y]);
}
// squarify bounds, it's a quadtree
var dx = maxX - minX, dy = maxY - minY;
if (dx > dy) {
minY -= (dx - dy) / 2;
maxY = minY + dx;
}
else {
minX -= (dy - dx) / 2;
maxX = minX + dy;
}
// Build the Barnes Hut root region
RegionMatrix[0 + REGION_NODE] = -1;
RegionMatrix[0 + REGION_CENTER_X] = (minX + maxX) / 2;
RegionMatrix[0 + REGION_CENTER_Y] = (minY + maxY) / 2;
RegionMatrix[0 + REGION_SIZE] = Math.max(maxX - minX, maxY - minY);
RegionMatrix[0 + REGION_NEXT_SIBLING] = -1;
RegionMatrix[0 + REGION_FIRST_CHILD] = -1;
RegionMatrix[0 + REGION_MASS] = 0;
RegionMatrix[0 + REGION_MASS_CENTER_X] = 0;
RegionMatrix[0 + REGION_MASS_CENTER_Y] = 0;
// Add each node in the tree
l = 1;
for (n = 0; n < order; n += PPN) {
// Current region, starting with root
r = 0;
subdivisionAttempts = SUBDIVISION_ATTEMPTS;
while (true) {
// Are there sub-regions?
// We look at first child index
if (RegionMatrix[r + REGION_FIRST_CHILD] >= 0) {
// There are sub-regions
// We just iterate to find a "leaf" of the tree
// that is an empty region or a region with a single node
// (see next case)
// Find the quadrant of n
if (NodeMatrix[n + NODE_X] < RegionMatrix[r + REGION_CENTER_X]) {
if (NodeMatrix[n + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Left quarter
q = RegionMatrix[r + REGION_FIRST_CHILD];
}
else {
// Bottom Left quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR;
}
}
else {
if (NodeMatrix[n + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Right quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 2;
}
else {
// Bottom Right quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 3;
}
}
// Update center of mass and mass (we only do it for non-leave regions)
RegionMatrix[r + REGION_MASS_CENTER_X] =
(RegionMatrix[r + REGION_MASS_CENTER_X] * RegionMatrix[r + REGION_MASS] +
NodeMatrix[n + NODE_X] * NodeMatrix[n + NODE_MASS]) /
(RegionMatrix[r + REGION_MASS] + NodeMatrix[n + NODE_MASS]);
RegionMatrix[r + REGION_MASS_CENTER_Y] =
(RegionMatrix[r + REGION_MASS_CENTER_Y] * RegionMatrix[r + REGION_MASS] +
NodeMatrix[n + NODE_Y] * NodeMatrix[n + NODE_MASS]) /
(RegionMatrix[r + REGION_MASS] + NodeMatrix[n + NODE_MASS]);
RegionMatrix[r + REGION_MASS] += NodeMatrix[n + NODE_MASS];
// Iterate on the right quadrant
r = q;
continue;
}
else {
// There are no sub-regions: we are in a "leaf"
// Is there a node in this leave?
if (RegionMatrix[r + REGION_NODE] < 0) {
// There is no node in region:
// we record node n and go on
RegionMatrix[r + REGION_NODE] = n;
break;
}
else {
// There is a node in this region
// We will need to create sub-regions, stick the two
// nodes (the old one r[0] and the new one n) in two
// subregions. If they fall in the same quadrant,
// we will iterate.
// Create sub-regions
RegionMatrix[r + REGION_FIRST_CHILD] = l * PPR;
w = RegionMatrix[r + REGION_SIZE] / 2; // new size (half)
// NOTE: we use screen coordinates
// from Top Left to Bottom Right
// Top Left sub-region
g = RegionMatrix[r + REGION_FIRST_CHILD];
RegionMatrix[g + REGION_NODE] = -1;
RegionMatrix[g + REGION_CENTER_X] = RegionMatrix[r + REGION_CENTER_X] - w;
RegionMatrix[g + REGION_CENTER_Y] = RegionMatrix[r + REGION_CENTER_Y] - w;
RegionMatrix[g + REGION_SIZE] = w;
RegionMatrix[g + REGION_NEXT_SIBLING] = g + PPR;
RegionMatrix[g + REGION_FIRST_CHILD] = -1;
RegionMatrix[g + REGION_MASS] = 0;
RegionMatrix[g + REGION_MASS_CENTER_X] = 0;
RegionMatrix[g + REGION_MASS_CENTER_Y] = 0;
// Bottom Left sub-region
g += PPR;
RegionMatrix[g + REGION_NODE] = -1;
RegionMatrix[g + REGION_CENTER_X] = RegionMatrix[r + REGION_CENTER_X] - w;
RegionMatrix[g + REGION_CENTER_Y] = RegionMatrix[r + REGION_CENTER_Y] + w;
RegionMatrix[g + REGION_SIZE] = w;
RegionMatrix[g + REGION_NEXT_SIBLING] = g + PPR;
RegionMatrix[g + REGION_FIRST_CHILD] = -1;
RegionMatrix[g + REGION_MASS] = 0;
RegionMatrix[g + REGION_MASS_CENTER_X] = 0;
RegionMatrix[g + REGION_MASS_CENTER_Y] = 0;
// Top Right sub-region
g += PPR;
RegionMatrix[g + REGION_NODE] = -1;
RegionMatrix[g + REGION_CENTER_X] = RegionMatrix[r + REGION_CENTER_X] + w;
RegionMatrix[g + REGION_CENTER_Y] = RegionMatrix[r + REGION_CENTER_Y] - w;
RegionMatrix[g + REGION_SIZE] = w;
RegionMatrix[g + REGION_NEXT_SIBLING] = g + PPR;
RegionMatrix[g + REGION_FIRST_CHILD] = -1;
RegionMatrix[g + REGION_MASS] = 0;
RegionMatrix[g + REGION_MASS_CENTER_X] = 0;
RegionMatrix[g + REGION_MASS_CENTER_Y] = 0;
// Bottom Right sub-region
g += PPR;
RegionMatrix[g + REGION_NODE] = -1;
RegionMatrix[g + REGION_CENTER_X] = RegionMatrix[r + REGION_CENTER_X] + w;
RegionMatrix[g + REGION_CENTER_Y] = RegionMatrix[r + REGION_CENTER_Y] + w;
RegionMatrix[g + REGION_SIZE] = w;
RegionMatrix[g + REGION_NEXT_SIBLING] = RegionMatrix[r + REGION_NEXT_SIBLING];
RegionMatrix[g + REGION_FIRST_CHILD] = -1;
RegionMatrix[g + REGION_MASS] = 0;
RegionMatrix[g + REGION_MASS_CENTER_X] = 0;
RegionMatrix[g + REGION_MASS_CENTER_Y] = 0;
l += 4;
// Now the goal is to find two different sub-regions
// for the two nodes: the one previously recorded (r[0])
// and the one we want to add (n)
// Find the quadrant of the old node
if (NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_X] < RegionMatrix[r + REGION_CENTER_X]) {
if (NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Left quarter
q = RegionMatrix[r + REGION_FIRST_CHILD];
}
else {
// Bottom Left quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR;
}
}
else {
if (NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Right quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 2;
}
else {
// Bottom Right quarter
q = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 3;
}
}
// We remove r[0] from the region r, add its mass to r and record it in q
RegionMatrix[r + REGION_MASS] = NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_MASS];
RegionMatrix[r + REGION_MASS_CENTER_X] = NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_X];
RegionMatrix[r + REGION_MASS_CENTER_Y] = NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_Y];
RegionMatrix[q + REGION_NODE] = RegionMatrix[r + REGION_NODE];
RegionMatrix[r + REGION_NODE] = -1;
// Find the quadrant of n
if (NodeMatrix[n + NODE_X] < RegionMatrix[r + REGION_CENTER_X]) {
if (NodeMatrix[n + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Left quarter
q2 = RegionMatrix[r + REGION_FIRST_CHILD];
}
else {
// Bottom Left quarter
q2 = RegionMatrix[r + REGION_FIRST_CHILD] + PPR;
}
}
else {
if (NodeMatrix[n + NODE_Y] < RegionMatrix[r + REGION_CENTER_Y]) {
// Top Right quarter
q2 = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 2;
}
else {
// Bottom Right quarter
q2 = RegionMatrix[r + REGION_FIRST_CHILD] + PPR * 3;
}
}
if (q === q2) {
// If both nodes are in the same quadrant,
// we have to try it again on this quadrant
if (subdivisionAttempts--) {
r = q;
continue; // while
}
else {
// we are out of precision here, and we cannot subdivide anymore
// but we have to break the loop anyway
subdivisionAttempts = SUBDIVISION_ATTEMPTS;
break; // while
}
}
// If both quadrants are different, we record n
// in its quadrant
RegionMatrix[q2 + REGION_NODE] = n;
break;
}
}
}
}
}
// 2) Repulsion
//--------------
// NOTES: adjustSizes = antiCollision & scalingRatio = coefficient
if (options.barnesHutOptimize) {
coefficient = options.scalingRatio;
// Applying repulsion through regions
for (n = 0; n < order; n += PPN) {
// Computing leaf quad nodes iteration
r = 0; // Starting with root region
while (true) {
if (RegionMatrix[r + REGION_FIRST_CHILD] >= 0) {
// The region has sub-regions
// We run the Barnes Hut test to see if we are at the right distance
distance = Math.sqrt(
(Math.pow(NodeMatrix[n + NODE_X] - RegionMatrix[r + REGION_MASS_CENTER_X], 2)) +
(Math.pow(NodeMatrix[n + NODE_Y] - RegionMatrix[r + REGION_MASS_CENTER_Y], 2))
);
if (2 * RegionMatrix[r + REGION_SIZE] / distance < options.barnesHutTheta) {
// We treat the region as a single body, and we repulse
xDist = NodeMatrix[n + NODE_X] - RegionMatrix[r + REGION_MASS_CENTER_X];
yDist = NodeMatrix[n + NODE_Y] - RegionMatrix[r + REGION_MASS_CENTER_Y];
if (options.adjustSizes) {
//-- Linear Anti-collision Repulsion
if (distance > 0) {
factor = coefficient * NodeMatrix[n + NODE_MASS] *
RegionMatrix[r + REGION_MASS] / distance / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
else if (distance < 0) {
factor = -coefficient * NodeMatrix[n + NODE_MASS] *
RegionMatrix[r + REGION_MASS] / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
}
else {
//-- Linear Repulsion
if (distance > 0) {
factor = coefficient * NodeMatrix[n + NODE_MASS] *
RegionMatrix[r + REGION_MASS] / distance / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
}
// When this is done, we iterate. We have to look at the next sibling.
if (RegionMatrix[r + REGION_NEXT_SIBLING] < 0)
break; // No next sibling: we have finished the tree
r = RegionMatrix[r + REGION_NEXT_SIBLING];
continue;
}
else {
// The region is too close and we have to look at sub-regions
r = RegionMatrix[r + REGION_FIRST_CHILD];
continue;
}
}
else {
// The region has no sub-region
// If there is a node r[0] and it is not n, then repulse
if (RegionMatrix[r + REGION_NODE] >= 0 && RegionMatrix[r + REGION_NODE] !== n) {
xDist = NodeMatrix[n + NODE_X] - NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_X];
yDist = NodeMatrix[n + NODE_Y] - NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_Y];
distance = Math.sqrt(xDist * xDist + yDist * yDist);
if (options.adjustSizes) {
//-- Linear Anti-collision Repulsion
if (distance > 0) {
factor = coefficient * NodeMatrix[n + NODE_MASS] *
NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_MASS] / distance / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
else if (distance < 0) {
factor = -coefficient * NodeMatrix[n + NODE_MASS] *
NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_MASS] / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
}
else {
//-- Linear Repulsion
if (distance > 0) {
factor = coefficient * NodeMatrix[n + NODE_MASS] *
NodeMatrix[RegionMatrix[r + REGION_NODE] + NODE_MASS] / distance / distance;
NodeMatrix[n + NODE_DX] += xDist * factor;
NodeMatrix[n + NODE_DY] += yDist * factor;
}
}
}
// When this is done, we iterate. We have to look at the next sibling.
if (RegionMatrix[r + REGION_NEXT_SIBLING] < 0)
break; // No next sibling: we have finished the tree
r = RegionMatrix[r + REGION_NEXT_SIBLING];
continue;
}
}
}
}
else {
coefficient = options.scalingRatio;
// Square iteration
for (n1 = 0; n1 < order; n1 += PPN) {
for (n2 = 0; n2 < n1; n2 += PPN) {
// Common to both methods
xDist = NodeMatrix[n1 + NODE_X] - NodeMatrix[n2 + NODE_X];
yDist = NodeMatrix[n1 + NODE_Y] - NodeMatrix[n2 + NODE_Y];
if (options.adjustSizes) {
//-- Anticollision Linear Repulsion
distance = Math.sqrt(xDist * xDist + yDist * yDist) -
NodeMatrix[n1 + NODE_SIZE] -
NodeMatrix[n2 + NODE_SIZE];
if (distance > 0) {
factor = coefficient *
NodeMatrix[n1 + NODE_MASS] *
NodeMatrix[n2 + NODE_MASS] /
distance / distance;
// Updating nodes' dx and dy
NodeMatrix[n1 + NODE_DX] += xDist * factor;
NodeMatrix[n1 + NODE_DY] += yDist * factor;
NodeMatrix[n2 + NODE_DX] += xDist * factor;
NodeMatrix[n2 + NODE_DY] += yDist * factor;
}
else if (distance < 0) {
factor = 100 * coefficient *
NodeMatrix[n1 + NODE_MASS] *
NodeMatrix[n2 + NODE_MASS];
// Updating nodes' dx and dy
NodeMatrix[n1 + NODE_DX] += xDist * factor;
NodeMatrix[n1 + NODE_DY] += yDist * factor;
NodeMatrix[n2 + NODE_DX] -= xDist * factor;
NodeMatrix[n2 + NODE_DY] -= yDist * factor;
}
}
else {
//-- Linear Repulsion
distance = Math.sqrt(xDist * xDist + yDist * yDist);
if (distance > 0) {
factor = coefficient *
NodeMatrix[n1 + NODE_MASS] *
NodeMatrix[n2 + NODE_MASS] /
distance / distance;
// Updating nodes' dx and dy
NodeMatrix[n1 + NODE_DX] += xDist * factor;
NodeMatrix[n1 + NODE_DY] += yDist * factor;
NodeMatrix[n2 + NODE_DX] -= xDist * factor;
NodeMatrix[n2 + NODE_DY] -= yDist * factor;
}
}
}
}
}
// 3) Gravity
//------------
g = options.gravity / options.scalingRatio;
coefficient = options.scalingRatio;
for (n = 0; n < order; n += PPN) {
factor = 0;
// Common to both methods
xDist = NodeMatrix[n + NODE_X];
yDist = NodeMatrix[n + NODE_Y];
distance = Math.sqrt(
Math.pow(xDist, 2) + Math.pow(yDist, 2)
);
if (options.strongGravityMode) {
//-- Strong gravity
if (distance > 0)
factor = coefficient * NodeMatrix[n + NODE_MASS] * g;
}
else {
//-- Linear Anti-collision Repulsion n
if (distance > 0)
factor = coefficient * NodeMatrix[n + NODE_MASS] * g / distance;
}
// Updating node's dx and dy
NodeMatrix[n + NODE_DX] -= xDist * factor;
NodeMatrix[n + NODE_DY] -= yDist * factor;
}
// 4) Attraction
//---------------
coefficient = 1 *
(options.outboundAttractionDistribution ?
outboundAttCompensation :
1);
// TODO: simplify distance
// TODO: coefficient is always used as -c --> optimize?
for (e = 0; e < size; e += PPE) {
n1 = EdgeMatrix[e + EDGE_SOURCE];
n2 = EdgeMatrix[e + EDGE_TARGET];
w = EdgeMatrix[e + EDGE_WEIGHT];
// Edge weight influence
ewc = Math.pow(w, options.edgeWeightInfluence);
// Common measures
xDist = NodeMatrix[n1 + NODE_X] - NodeMatrix[n2 + NODE_X];
yDist = NodeMatrix[n1 + NODE_Y] - NodeMatrix[n2 + NODE_Y];
// Applying attraction to nodes
if (options.adjustSizes) {
distance = Math.sqrt(
(Math.pow(xDist, 2) + Math.pow(yDist, 2)) -
NodeMatrix[n1 + NODE_SIZE] -
NodeMatrix[n2 + NODE_SIZE]
);
if (options.linLogMode) {
if (options.outboundAttractionDistribution) {
//-- LinLog Degree Distributed Anti-collision Attraction
if (distance > 0) {
factor = -coefficient * ewc * Math.log(1 + distance) /
distance /
NodeMatrix[n1 + NODE_MASS];
}
}
else {
//-- LinLog Anti-collision Attraction
if (distance > 0) {
factor = -coefficient * ewc * Math.log(1 + distance) / distance;
}
}
}
else {
if (options.outboundAttractionDistribution) {
//-- Linear Degree Distributed Anti-collision Attraction
if (distance > 0) {
factor = -coefficient * ewc / NodeMatrix[n1 + NODE_MASS];
}
}
else {
//-- Linear Anti-collision Attraction
if (distance > 0) {
factor = -coefficient * ewc;
}
}
}
}
else {
distance = Math.sqrt(
Math.pow(xDist, 2) + Math.pow(yDist, 2)
);
if (options.linLogMode) {
if (options.outboundAttractionDistribution) {
//-- LinLog Degree Distributed Attraction
if (distance > 0) {
factor = -coefficient * ewc * Math.log(1 + distance) /
distance /
NodeMatrix[n1 + NODE_MASS];
}
}
else {
//-- LinLog Attraction
if (distance > 0)
factor = -coefficient * ewc * Math.log(1 + distance) / distance;
}
}
else {
if (options.outboundAttractionDistribution) {
//-- Linear Attraction Mass Distributed
// NOTE: Distance is set to 1 to override next condition
distance = 1;
factor = -coefficient * ewc / NodeMatrix[n1 + NODE_MASS];
}
else {
//-- Linear Attraction
// NOTE: Distance is set to 1 to override next condition
distance = 1;
factor = -coefficient * ewc;
}
}
}
// Updating nodes' dx and dy
// TODO: if condition or factor = 1?
if (distance > 0) {
// Updating nodes' dx and dy
NodeMatrix[n1 + NODE_DX] += xDist * factor;
NodeMatrix[n1 + NODE_DY] += yDist * factor;
NodeMatrix[n2 + NODE_DX] -= xDist * factor;
NodeMatrix[n2 + NODE_DY] -= yDist * factor;
}
}
// 5) Apply Forces
//-----------------
var force,
swinging,
traction,
nodespeed;
// MATH: sqrt and square distances
if (options.adjustSizes) {
for (n = 0; n < order; n += PPN) {
if (!NodeMatrix[n + NODE_FIXED]) {
force = Math.sqrt(
Math.pow(NodeMatrix[n + NODE_DX], 2) +
Math.pow(NodeMatrix[n + NODE_DY], 2)
);
if (force > MAX_FORCE) {
NodeMatrix[n + NODE_DX] =
NodeMatrix[n + NODE_DX] * MAX_FORCE / force;
NodeMatrix[n + NODE_DY] =
NodeMatrix[n + NODE_DY] * MAX_FORCE / force;
}
swinging = NodeMatrix[n + NODE_MASS] *
Math.sqrt(
(NodeMatrix[n + NODE_OLD_DX] - NodeMatrix[n + NODE_DX]) *
(NodeMatrix[n + NODE_OLD_DX] - NodeMatrix[n + NODE_DX]) +
(NodeMatrix[n + NODE_OLD_DY] - NodeMatrix[n + NODE_DY]) *
(NodeMatrix[n + NODE_OLD_DY] - NodeMatrix[n + NODE_DY])
);
traction = Math.sqrt(
(NodeMatrix[n + NODE_OLD_DX] + NodeMatrix[n + NODE_DX]) *
(NodeMatrix[n + NODE_OLD_DX] + NodeMatrix[n + NODE_DX]) +
(NodeMatrix[n + NODE_OLD_DY] + NodeMatrix[n + NODE_DY]) *
(NodeMatrix[n + NODE_OLD_DY] + NodeMatrix[n + NODE_DY])
) / 2;
nodespeed =
0.1 * Math.log(1 + traction) / (1 + Math.sqrt(swinging));
// Updating node's positon
NodeMatrix[n + NODE_X] =
NodeMatrix[n + NODE_X] + NodeMatrix[n + NODE_DX] *
(nodespeed / options.slowDown);
NodeMatrix[n + NODE_Y] =
NodeMatrix[n + NODE_Y] + NodeMatrix[n + NODE_DY] *
(nodespeed / options.slowDown);
}
}
}
else {
for (n = 0; n < order; n += PPN) {
if (!NodeMatrix[n + NODE_FIXED]) {
swinging = NodeMatrix[n + NODE_MASS] *
Math.sqrt(
(NodeMatrix[n + NODE_OLD_DX] - NodeMatrix[n + NODE_DX]) *
(NodeMatrix[n + NODE_OLD_DX] - NodeMatrix[n + NODE_DX]) +
(NodeMatrix[n + NODE_OLD_DY] - NodeMatrix[n + NODE_DY]) *
(NodeMatrix[n + NODE_OLD_DY] - NodeMatrix[n + NODE_DY])
);
traction = Math.sqrt(
(NodeMatrix[n + NODE_OLD_DX] + NodeMatrix[n + NODE_DX]) *
(NodeMatrix[n + NODE_OLD_DX] + NodeMatrix[n + NODE_DX]) +
(NodeMatrix[n + NODE_OLD_DY] + NodeMatrix[n + NODE_DY]) *
(NodeMatrix[n + NODE_OLD_DY] + NodeMatrix[n + NODE_DY])
) / 2;
nodespeed = NodeMatrix[n + NODE_CONVERGENCE] *
Math.log(1 + traction) / (1 + Math.sqrt(swinging));
// Updating node convergence
NodeMatrix[n + NODE_CONVERGENCE] =
Math.min(1, Math.sqrt(
nodespeed *
(Math.pow(NodeMatrix[n + NODE_DX], 2) +
Math.pow(NodeMatrix[n + NODE_DY], 2)) /
(1 + Math.sqrt(swinging))
));
// Updating node's positon
NodeMatrix[n + NODE_X] =
NodeMatrix[n + NODE_X] + NodeMatrix[n + NODE_DX] *
(nodespeed / options.slowDown);
NodeMatrix[n + NODE_Y] =
NodeMatrix[n + NODE_Y] + NodeMatrix[n + NODE_DY] *
(nodespeed / options.slowDown);
}
}
}
// We return the information about the layout (no need to return the matrices)
return {};
};