-
Notifications
You must be signed in to change notification settings - Fork 0
/
LC1114.cpp
184 lines (141 loc) · 3.88 KB
/
LC1114.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
1114. Print in Order
Suppose we have a class:
public class Foo {
public void first() { print("first"); }
public void second() { print("second"); }
public void third() { print("third"); }
}
The same instance of Foo will be passed to three different threads. Thread A will call first(),
thread B will call second(), and thread C will call third().
Design a mechanism and modify the program to ensure that second() is executed after first(),
and third() is executed after second().
Example 1:
Input: [1,2,3]
Output: "firstsecondthird"
Explanation: There are three threads being fired asynchronously.
The input [1,2,3] means thread A calls first(), thread B calls second(), and thread C calls third().
"firstsecondthird" is the correct output.
Example 2:
Input: [1,3,2]
Output: "firstsecondthird"
Explanation: The input [1,3,2] means thread A calls first(), thread B calls third(), and thread C calls second().
"firstsecondthird" is the correct output.
Note:
We do not know how the threads will be scheduled in the operating system, even though the numbers in the
input seems to imply the ordering. The input format you see is mainly to ensure our tests' comprehensiveness.
*/
//Approach 1 0f 4: Using Mutex and Condition Variables.
class Foo
{
std::condition_variable cv;
int spWakeUp = 1;
std::mutex mutex;
public:
Foo() {
}
void first(function<void()> printFirst) {
{
std::unique_lock lock(mutex);
cv.wait(lock, [&](){return spWakeUp == 1; });
printFirst();
spWakeUp = 2;
}
cv.notify_all();
}
void second(function<void()> printSecond) {
{
std::unique_lock lock(mutex);
cv.wait(lock, [&](){return spWakeUp == 2; });
printSecond();
spWakeUp = 3;
}
cv.notify_all();
}
void third(function<void()> printThird) {
{
std::unique_lock lock(mutex);
cv.wait(lock, [&](){return spWakeUp == 3; });
printThird();
spWakeUp = 1;
}
cv.notify_all();
}
};
//Approach 2 of 4: using Volatile
class Foo {
volatile int count;
public:
Foo() : count(1) {
}
void first(function<void()> printFirst) {
printFirst();
count++;
}
void second(function<void()> printSecond) {
while(count != 2)
{
std::this_thread::yield();
}
printSecond();
count++;
}
void third(function<void()> printThird) {
while(count != 3)
{
std::this_thread::yield();
}
printThird();
}
};
//Approach 3 0f 4: Using `semaphone`
#include <semaphore.h>
class Foo {
sem_t second;
sem_t third;
public:
Foo() : {
sem_init(&second, 0, 0);
sem_init(&third, 0, 0);
}
~Foo()
{
sem_destroy(&second);
sem_destroy(&third);
}
void first(function<void()> printFirst) {
printFirst();
sem_post(&second);
}
void second(function<void()> printSecond) {
sem_wait(&second);
printSecond();
sem_post(&third);
}
void third(function<void()> printThird) {
sem_wait(&third)
printThird();
}
};
//Approach 4 0f 4: Using `atomic`
class Foo {
std::atomic<int> count;
public:
Foo() : count(1) {
}
void first(function<void()> printFirst) {
printFirst();
count.store(2, std::memory_order_release);
}
void second(function<void()> printSecond) {
while(count != 2)
{ }
printSecond();
count.store(3, std::memory_order_release);
}
void third(function<void()> printThird) {
while(count != 3)
{ }
printThird();
}
};