-
Notifications
You must be signed in to change notification settings - Fork 0
/
correlator.nb
5260 lines (5217 loc) · 275 KB
/
correlator.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 281394, 5252]
NotebookOptionsPosition[ 277813, 5202]
NotebookOutlinePosition[ 278146, 5217]
CellTagsIndexPosition[ 278103, 5214]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"SpinQ", "[", "S_", "]"}], ":=",
RowBox[{
RowBox[{"IntegerQ", "[",
RowBox[{"2", " ", "S"}], "]"}], "&&",
RowBox[{"S", "\[GreaterEqual]", "0"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"splus", "[", "0", "]"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{"{", "0", "}"}], "}"}], "//", "SparseArray"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"splus", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{
RowBox[{"splus", "[", "S", "]"}], "=",
RowBox[{"SparseArray", "[",
RowBox[{
RowBox[{
RowBox[{"Band", "[",
RowBox[{"{",
RowBox[{"1", ",", "2"}], "}"}], "]"}], "\[Rule]",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"S",
RowBox[{"(",
RowBox[{"S", "+", "1"}], ")"}]}], "-",
RowBox[{"M", " ",
RowBox[{"(",
RowBox[{"M", "+", "1"}], ")"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"M", ",",
RowBox[{"S", "-", "1"}], ",",
RowBox[{"-", "S"}], ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}], ",",
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}]}], "}"}]}],
"]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sminus", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{"Transpose", "[",
RowBox[{"splus", "[", "S", "]"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sx", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{
RowBox[{"sx", "[", "S", "]"}], "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"splus", "[", "S", "]"}], "+",
RowBox[{"sminus", "[", "S", "]"}]}], ")"}], "/",
"2"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sy", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{
RowBox[{"sy", "[", "S", "]"}], "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"splus", "[", "S", "]"}], "-",
RowBox[{"sminus", "[", "S", "]"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"2", " ", "I"}], ")"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sz", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{
RowBox[{"sz", "[", "S", "]"}], "=", " ",
RowBox[{"SparseArray", "[",
RowBox[{
RowBox[{
RowBox[{"Band", "[",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], "]"}], "\[Rule]",
RowBox[{"Range", "[",
RowBox[{"S", ",",
RowBox[{"-", "S"}], ",",
RowBox[{"-", "1"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"2", "S"}], " ", "+", "1"}], ",",
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}]}], "}"}]}],
"]"}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"id", "[",
RowBox[{"S_", "?", "SpinQ"}], "]"}], ":=",
RowBox[{
RowBox[{"id", "[", "S", "]"}], "=",
RowBox[{"IdentityMatrix", "[",
RowBox[{
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}], ",", "SparseArray"}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"op", "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",", " ",
RowBox[{"k_", "?", "IntegerQ"}], ",",
RowBox[{"a_", "?", "MatrixQ"}]}], "]"}], "/;", "\[IndentingNewLine]",
RowBox[{
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}], "&&",
RowBox[{
RowBox[{"Dimensions", "[", "a", "]"}], "\[Equal]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}], ",",
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}]}], "}"}]}]}]}], ":=",
RowBox[{"KroneckerProduct", "[",
RowBox[{
RowBox[{"IdentityMatrix", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}], ")"}], "^",
RowBox[{"(",
RowBox[{"k", "-", "1"}], ")"}]}], ",", "SparseArray"}], "]"}], ",",
"a", ",",
RowBox[{"IdentityMatrix", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "S"}], "+", "1"}], ")"}], "^",
RowBox[{"(",
RowBox[{"L", "-", "k"}], ")"}]}], ",", "SparseArray"}], "]"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sx", "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"sx", "[", "S", "]"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sy", "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"sy", "[", "S", "]"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"sz", "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"sz", "[", "S", "]"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "+"], "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{
RowBox[{"sy", "[", "S", "]"}], "+",
RowBox[{"I", " ",
RowBox[{"sz", "[", "S", "]"}]}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "x"], "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"2", " ",
RowBox[{"sx", "[", "S", "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "y"], "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"2", " ",
RowBox[{"sy", "[", "S", "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
SubscriptBox["\[Sigma]", "z"], "[",
RowBox[{
RowBox[{"S_", "?", "SpinQ"}], ",",
RowBox[{"L_", "?", "IntegerQ"}], ",",
RowBox[{"k_", "?", "IntegerQ"}]}], "]"}], "/;",
RowBox[{"1", "\[LessEqual]", "k", "\[LessEqual]", "L"}]}], ":=",
RowBox[{"op", "[",
RowBox[{"S", ",", "L", ",", "k", ",",
RowBox[{"2", " ",
RowBox[{"sz", "[", "S", "]"}]}]}],
"]"}]}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.874732858296733*^9, 3.874732866659442*^9}, {
3.874732898171777*^9, 3.874732972312992*^9}, {3.8747331704054737`*^9,
3.8747333851443377`*^9}, {3.874733482819276*^9, 3.8747334991368732`*^9}, {
3.874733579914596*^9, 3.874733583986539*^9}, {3.874733675830324*^9,
3.8747336798919687`*^9}, 3.8747337104357967`*^9, {3.874733770143268*^9,
3.874733807933092*^9}, 3.874734088121166*^9, {3.874734196848287*^9,
3.874734272389003*^9}, {3.874734362748806*^9, 3.874734388241576*^9}, {
3.874734472099512*^9, 3.8747344861863413`*^9}, {3.874735002096064*^9,
3.874735002303186*^9}, {3.874735069432514*^9, 3.8747350713110237`*^9}, {
3.874735107218432*^9, 3.874735144753004*^9}, {3.874735227104971*^9,
3.874735268921425*^9}, {3.8747353160428343`*^9, 3.8747353814214487`*^9}, {
3.874735415060247*^9, 3.874735432826798*^9}, {3.874735485827566*^9,
3.874735597836172*^9}, {3.887805186177526*^9, 3.8878051994280443`*^9}, {
3.887876121331697*^9, 3.8878761216913157`*^9}, {3.887876223388352*^9,
3.8878762426002207`*^9}, 3.88787685148748*^9, {3.8878770851599483`*^9,
3.887877091269844*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"dbde90bb-db5a-4c37-8d13-725ca549ab40"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"S", "=",
RowBox[{"1", "/", "2"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Correlator", "[",
RowBox[{"L", ",", "1"}], "]"}], "=",
RowBox[{
SubscriptBox["\[Sigma]", "+"], "[",
RowBox[{"S", ",", "L", ",", "1"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Correlator", "[",
RowBox[{"L_", ",", "i_"}], "]"}], ":=",
RowBox[{
RowBox[{"Correlator", "[",
RowBox[{"L", ",", "i"}], "]"}], "=",
RowBox[{
RowBox[{"Correlator", "[",
RowBox[{"L", ",",
RowBox[{"i", "-", "1"}]}], "]"}], ".",
RowBox[{
SubscriptBox["\[Sigma]", "+"], "[",
RowBox[{"S", ",", "L", ",", "i"}], "]"}]}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"F", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"2", "^", "L"}], " ",
RowBox[{"Correlator", "[",
RowBox[{"L", ",", "L"}], "]"}]}], "//", "Re"}], "//",
"IntegerPart"}]}], ";", "\[IndentingNewLine]",
RowBox[{"H", "=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{"j", "+", "p"}], "\[LessEqual]", "L"}], ",",
RowBox[{
RowBox[{"sz", "[",
RowBox[{"S", ",", "L", ",", "j"}], "]"}], ".",
RowBox[{"sz", "[",
RowBox[{"S", ",", "L", ",", " ",
RowBox[{"j", "+", "p"}]}], "]"}]}], ",", "0"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "L"}], "}"}]}], "]"}], " ", ",",
RowBox[{"{",
RowBox[{"p", ",", "1", ",", "r"}], "}"}]}], "]"}]}], ";",
RowBox[{"(*",
RowBox[{"generate", " ", "Hamiltonian"}], "*)"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Epsilon]", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"Diagonal", "[",
RowBox[{"MatrixExp", "[",
RowBox[{"I", " ", "H", " ", "t"}], "]"}], "]"}], ".", "F", ".",
RowBox[{"Diagonal", "[",
RowBox[{"MatrixExp", "[",
RowBox[{
RowBox[{"-", "I"}], " ", "H", " ", "t"}], "]"}], "]"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalEpsilon]", "[", "t_", "]"}], ":=",
RowBox[{
RowBox[{"2", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "4"}], " ", "L"}], ")"}]}], " ",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"\[Epsilon]", "[", "t", "]"}], "]"}], "^", "2"}]}]}], ";",
" ", "\[IndentingNewLine]",
RowBox[{
"Print", "[",
"\"\<==================================================================\
============\>\"", "]"}], ";", "\[IndentingNewLine]",
RowBox[{
"Print", "[",
"\"\<\[CapitalEpsilon](\[Tau]) = \!\(\*SuperscriptBox[\(2\), \(\(-4\) \
L\)]\)|\[Epsilon][\[Tau]]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\"", "]"}],
";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"\"\<L = \>\"", "<>",
RowBox[{"ToString", "[", "L", "]"}], "<>", "\"\< r = \>\"", "<>",
RowBox[{"ToString", "[", "r", "]"}], "<>",
"\"\<\\n \[Epsilon][\[Tau]] = \>\""}], ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Epsilon]", "[", "\[Tau]", "]"}], "//",
"ComplexExpand"}], "//", "FullSimplify"}], "//", "Chop"}]}], "]"}],
";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"2", "^", "L"}], " ",
RowBox[{"\[CapitalEpsilon]", "[", "\[Tau]", "]"}]}], ",", "1"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"\[Tau]", ",", "0", ",",
RowBox[{"2", " ", "\[Pi]"}]}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<time \[Tau]\>\"", ",",
RowBox[{
"\"\<Normalized Bell Correlator \!\(\*SuperscriptBox[\(2\), \
\(L\)]\)\[CapitalEpsilon](\[Tau]) | L = \>\"", "<>",
RowBox[{"ToString", "[", "L", "]"}], "<>", "\"\< r = \>\"", "<>",
RowBox[{"ToString", "[", "r", "]"}]}]}], " ", "}"}]}]}], "]"}],
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"r", ",", "1", ",", "4"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "8", ",", "10", ",", "2"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdz11IU3EYBvDDNAnJMYWs6XITVznwpm8cOT1iLDxgpmtpF2cyt6XONrqw
NfELWrWTLUUhCLqa+IGhZWVRWlM4oUjuQhSmZQrzu2NeGDQhh+f5X7z8eC6e
l/dNNztLrBKKojTiQKPy3jH3L4H+01l3HHqVzAn4yWlXQcvGpho6MigdHGKL
9bBMFmEglz9qgyUJ48TbPFcvDws067E3wYaX9UbZqkArrr+zQv8PaQO8umVu
hpLhnx64pRrgYNzTBR8sP9P2jGR9Rz8MZsYMwbd12o9wcSlmFEZXnFNwP7ad
GJdb5k4U1VmrW2DYRMusawLdc+rcUch/OamA7NxNJbyx9yC78p/47+kRLbSw
d2a9oqG+uyFY+tizCA3t6mUY/ba9Aqtea1fhRsC1Cf3Nwi6ceSGPwA+7ZooT
zc8bPgxvHdlJgNKv+0kw65BPDkMTShVULNzPgpOB6HlYVCO5APu2pTlkT2YF
A7/zYQN8PrhjhC2thSZY1c1WQluRvwaezfbbYe+8rhEWLPHEoNvlgZeTNA9h
WsojDvY7LraS/ue8LuhwXSFe0tS+gn+nU9+T+12pAZJNv3monsmYhmOFpcSe
WUb/RHQwPZmBkknqGvQO/DfAgiBtg5Y3HdUweT3eC5cjsT54AHF3bHs=
"],
CellLabel->"In[17]:=",ExpressionUUID->"acd7a430-d824-4058-90fc-45596bf34331"],
Cell[CellGroupData[{
Cell[BoxData["\<\"============================================================\
==================\"\>"], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.88787927682286*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"a3720106-ed38-4d55-b928-ebf6bebec3a9"],
Cell[BoxData["\<\"\[CapitalEpsilon](\[Tau]) = \
\\!\\(\\*SuperscriptBox[\\(2\\), \\(\\(-4\\) \
L\\)]\\)|\[Epsilon][\[Tau]]\\!\\(\\*SuperscriptBox[\\(|\\), \
\\(2\\)]\\)\"\>"], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.887879276829315*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"debb102a-9422-4354-ba9a-8a9d4642ee78"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"L = 8 r = 1\\n \[Epsilon][\[Tau]] = \"\>", "\[InvisibleSpace]",
RowBox[{"64", " ",
SuperscriptBox[
RowBox[{"Csc", "[",
FractionBox["\[Tau]", "4"], "]"}], "6"], " ",
SuperscriptBox[
RowBox[{"Sin", "[",
FractionBox["\[Tau]", "2"], "]"}], "10"]}]}],
SequenceForm[
"L = 8 r = 1\n \[Epsilon][\[Tau]] = ", 64
Csc[Rational[1, 4] $CellContext`\[Tau]]^6
Sin[Rational[1, 2] $CellContext`\[Tau]]^10],
Editable->False]], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.887879277117606*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"88615c2f-741d-42af-8e45-d450b06cad9e"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwUVnk4Vl8XNWYeXt73bVCmUElCpuSefaKE6CdSKiIKIVOGQqYKqSRJFJE5
U2YiMxlCIjORqUSmTBk/3/3nPuu55569195rnX2ETO10r9PR0NCoMtDQ/P9N
X8baPCzng2j+/2B0VHS89Bj/c2OQpmG+tbd8Umkl8/C17hA7oFE/KeJcanNs
lGy5nB/itYU9H+0rmTzWo3a/MiHkKXjXmoSWFNsor4izi3tUPoO5P6GV3La+
yv4yHY4Jxc9hIlI4ss/ihTJZKaa4OfcF8PV/z5iaSVR+e9yKYTn9JdQUcfzo
py1QltSQ1RZKioCvd3NFAlprlIt1Nl5oxryGbproth0lbcrqBnXfb0VEwcXr
WVFn9/5QbjcO2RcVEg1KHlMCdQWTyllHJBWHa2LA67XCWsnZJWVXhed9rpVv
YYewNTFuRUegY8ve7GWxkLg5Ll18lZ1gACPRt8VxcKeDs+CaGYVoUKmslyuM
hzP9eteqwwWIZ2r7bBtyE0C1+rvt4QkxwkDzMY9xViJ4uywf/XlRiuA/M5v/
Nz0J/rD0MrGvyhMjZ89fDkhJhpyQ2oGdPUCk6hdv7k56B2uDvH3LDScJx4uC
8VlxKZCaVvxQ5bY2oWj0QF0tJhW+ap3akMrTIzZMfk/2RKbBF89L7TrbLxE1
1/57ZheRDvaiHsiZ7yrx2DJXjiEsAzp9jA35lc0JXZudPeEh74Fzov1Ra7IN
wa4IZWGnMmFPoUTOQz1HYuaDA+lHTSac9Nv3jv2EK9F2LN7s4IksMBotphzS
v0vkl3TkOVdmwbhQumTTFV8iAliYy3E27G0VbZL67kd4VBy7xFqWDWll+ysW
tB4TJqq2aeeIHMgvv8t0wuoZoVoTs/GmOAeEnuqZcOu+IMROtemMH82FYi6O
zJzlCIK1njHuSGEu7B3atyPYI5r4o6m4cFc+D06nMc/924wlWhqtTtXl5sHy
zvhDZd8SiZwzURE8R/JhSFRl6aRuKhHW8mXCMCsfJo4/eGClnkm46dKhpMMF
IMv6tblaP4cw+iYbPJteALzifyq0BvMJfN5i6JhEIQgc9OlvXC4iRLoiZP1S
CuGq21L5SFYZwXSp0a9l/wdwzP/v8Y7gSuJ370bXrqQPMHX4Eu2x9BqiyUj6
4HXRImB5fItuTLmeyBwwu/s+rgh6nxt1/NRqIkKvhn35J1QMhHLvmuxiC+E6
XCd0IqYYyB+/DzCGtRGXrq/eCuL/CFP/IhU2gzoI9PPQp67IjyDwxMSJNNFN
CN0w2bGXrwT833xzIOf1EwwTIVY3I0pAcmr+r/XaIPHTpuZjwfZSMC8zvvTq
6jDRMLXESRdWCvIP/O9xkcaIDHvxq1rkMnjd+63AkGeceDZnmBMWUgYxLI32
uTcniSeUV8rlHOVA7KjayMAzRGvWAwE53XLQd1f/Ux04R1DPONClhJVDb4pK
bCXfAnH5t+Eof285KDqUP/6+skTE+KnXPReoAIlVD4tfh1eJEWHZVOZrFfD3
c/A+vaoN4kCZQNDd5ApQcJfIEjCmRbaX2RzmJivgRcUYVfUFPcpZWtSzkK4E
j4dPwJRlG1p+PiTf51wJen5nHhypYEbKUs07zxZVwq6p++d6K9mQT+OHtZqN
StB9+zh2jsyFPlkmDCipVgEhcr1dzZiEWBmfVb73r4LHNiV33prxov/eeiSI
NFaB8+MDZyJeU1AoYRkQwV0NM/On1/zYdqDubj1rTv1qMJU8W8xVuAvxu8CZ
exHVkMV+2vpA4h5kynNQerm/GuY4Htk8vSmIkjKo5JvCNdD2uI+iKSmMJjXp
ln6Y18DrbkrpyR0iSOrnn+7zqTXAdp5ozJUUQ0UCNdFY9hMc+sZu8nFKHG0U
Z/rm3f4E0Z53BGqjDyFVg8jr4iWfoK3qxpPtalIoYN5fPZq2FjZHQsWE+6RR
Y/Ctg2S1WhhmiuPTCj2CSIeMOR8G1oLZsugtGgc5dL5ec3a9uRb2DfxmaXZS
QAO0wgU/L9SBbqCiXvraMSTyhuOVYWQdbNK55L/xQ8hS6Z/H18E6aGL9wpf/
FqP0jhFjNdF6ePnZ4pkinwqac2xRKb5RDyYCLIGvs1SRPNdHUamMeui9kP+3
2Pwkck9NYk6Yq4dbVu29T5VPIYYRz+Yg9wa4lREtnqF7Gml4W2XRlzfAib6C
NOuX2iho9/nQ2wyfwUyH7/EQnQ5qLTzu+kf9M0wodrMJ6JxF2/UPXTJ98hku
ucuxlOTqIsPZHUTn188ws18pi1/mHIp5wiCoRW2EHuUwjYJ6fST+qXdULroR
ksLk83O0LyI709q6lOFGuLHf9fpF4jLK3chOFdjfBDqmXtuLtY3Q8qs3QaE2
TfCxUtg11dsYEQqBDixZTRCT3ifJMmmCfNucz3kuNMGMU0Ddorgp+mR3VeHv
0Wbgy16r3O9phnSSFdf7KpvBocLxa8l1c/TihMjgWaYv8Lb3UKTDmgXqGeSq
+nT6C9h+PsPMnnYDme38GZD57QsImHjcFLt8E327NJ4Xwt4CfXJSiqZGdmhx
v/G+JskW8G9Wf7lRao+O1WiyqtxqAavp68zy3LcQ97fELwrPW4DrvtjGZ2Un
NDJE9+JQTgvYFY7RG99xRkE0xQI7/7bAS/ekaRPR28iMa/soJ+9X8DkbStUL
u4MU+W+lMBz5ChO3fhzW2OWOho4dlJtx/AqBGoMo7IonKtD0XxkN+QqHWApO
6XN7o8cXh8t6s7+C9ODK0ps1byTn+lqzdu4r9At0LXYv+yJWvyWuEp5WENRi
hgaW++h7qF57tkwrlNXtUVre9wAFZLOZvHFshYir5vHHgvyRUYWFaGhIK/Ap
7G2/1RmAZFqqfj/MboVj71xdD0sFor4/7s7Oc60gcUiVM43nCcpa61Sy5mkD
Nn8NtYKoIOTHJktzVaYNbDPOXr65JxgdPjAZqOXYBmuNr9p3dz5DDIrqOioh
bSDP6+q6UBmCutTiKYrZbUCqa6fqfHiOfK8Zxuyda4PXCfMmQrUvUEd0Y96K
wzcwbn1muu74CqVm7HefefYNWPCbzlelr5F3yX08lvUNru+Syz+6Iwod6FX+
/HX2GzTkXFx1X4pGG+PhwbWkdnjsevkiuSwGtS7P65dIt0O/Yn6zU+Bb5EFN
H0x2aIfRdScjR6U4dFaUJfHNs3Zo+Kv2Jk4gHonJXrcOzWqHbxNNhkycCajl
7J5Fr9l28LnB55LAlIT2PnnCdsGhA+4aolf2rqlo+fV4i9azDqjpfjNy+X0a
akw5GaaS1QEffmcclPmbjlzq1gUlZzvgqUakGVknE53uvDi2l9QJ848fr7Iw
ZiHBsbzUndKdUH3H9V9ZeRZqoLeVZ3TohK8rQlZq2jkomqdhdSW4EzIrdUf8
+HORk5BYxUxmJ9xROzBosZSL9sD3030znWDp6P57pTwf2buduZpj3wVmstGd
J4qKkKatcjJzcBe4vKyjdtUXo72m4tNG77uALLPRmDn0EXVobLvLPNUFFkVv
+1Sky1AmMV9lxNENx4tzd1YfKUeB0kOsORLdIEvjdZ/yrRwRO0vDjay7YfnX
HuNukUpE5UgbyA7shp0qwSrh7ZVohuaVGHNKN1wGizb+x1Uo/pdzbvavblhv
HzsuylaDWAsPtTCZ90DNpPX3Qv06NJLKt93oQQ/E5Xxt0jlaj0qjWa5kx/cA
zc+PN9lFGpCD/+iE4XAPXHDbFZ3B1Yg03dtksul6oVyl6dUSdxMSsau4wyTc
C1+8loQP7GpGXeejmLJNesHvmv5coHALytZ8dIbJuxd2K24bisppQY/QnReG
0b2gFRhdwaXxFSEx/b1M33thZtfaqLdPK0pYYAfDy32g5Wkn3XiwHXmOrzzI
cusDFrNt2tuG25FB/6/Gba/6gL7lotbT6A7EXlN9KaurD2IzkAjpQBdyDPVw
2Xa+H/gkzS498elFWgFWJZed+2G/8dz9v+Z9SMzDgCErtB/26LlcKdPtR91m
siGX2/qh3N5xVgANIHxkMj1T5zssmRsv7s/9gXbt65lntP8OdC9nBF6qDKG/
u+qOXX76HX4qHWfu/jaEEuni6xmbvwPn517Tw4wjiKP18uil0wPAM/4l5M3L
MTRWoyGRaTUALhOXXARP/UTlHxRuMQYOwKU7qumSqz+R01te2sy6AdjRVjKk
5zCObhZeD6LbOwjPyHaKz8MnkaTGWUFa2UH4MkZHKfT5g2a6lbM3TwxCx4i1
j7TDFHJa5e1YMx+Ebzerw7qlZ5AbqtyzlDIILJ7k637ac0j5S/r7heJBuH+J
wcGlfw6tG0ccn28chLee+sLiDn+Rt4/99dmpQTCO+6h3OH4e+VXzp0/I/IDM
+J28zMeWkLo+K/xW/QEc5r92W00sIZaxhZZf537AUZkgdxSzjB4zNc2PuvwA
g6gLapHbV9BzTXflwaIf4JOqSm2DdXSu17z5++cfAI/9NW2oG4hqo2vS3/cD
/oi1RBFzG+jVkwP3ezZ+QL7viOk/QxqIaen8/E1lCD7cnxPWVaMD06tVRm16
Q9DvR++8VksHe+cypr9eGwLKh9lD2Vr0kMjrx/vFbwiWzK6ZuRszQPp52cv1
DUMw6z76VjptG9j+FPhT2zsErXvr7w6dYgKp22xenyaHYLHU4CbfTybIjRiK
reIchuLj/fSWUixQ1Bf8u0R3GEp4Ang1Z9jA46aHx0ezYegcXd62I4UdiA0L
zmKnYbAJuT69bMEB5QIgUxg2DIyV+S7EDCfUmv65k90zDBKn55oddpHg2y8N
liTTEZgKbrlG20KG6Yj9J+85jkCb4cg9HQ0KsJ5m8jH2HYHlSzric9UUwOnV
y9tjR6BXqsDjbBUVUh3gV8CPEbjh3N1xv38HfBLmF7k+OwJcHMKCNlY7YbBt
zfg47SgUWfbemP23E6jyRZ3/BEfhfRaRvC7IB74rsrVWJqNgVvgfoRi8B6JS
eelP2Y9C2uFZED/CD4WGc2iv9yhor1tqsHfzw5/S9/m90aNgAI4fRqmCYHBP
PFFrYBQudj8OlfUUgsPsgg8kr4xBScTdF6yRIqBZslHOajsGn3bL3U5gEoVr
tv1rY3fHYFnj3Tuysyi8annlFB01BlEr+/4F6IvBtheUa9z9Y5CbE+3ofmg/
CKnNR09OjsEZFtunVsn7QXmptbdubQwEJ6ocr4oeAIeLwXo+u3+C8ECBoY+o
OPTtYVOdu/xza54lRKuDBCw1j3s2W/+EAM44G9nPEsDjXVeU4v4TKCykPcYX
D4H60AMZs9c/waO5ovmJhyTkJNIIf+v5CdKiFYJBdlIQeHiRJv/iL9C2PHP6
E8cRcHPVODhm9QvkNyTnae2OwI2ySH2qxy94KmfU2/H1CKj/p5ri8uYX9Jlx
MF6NlAUmu2A9heFfMNPAYvXwpDws5g/ftZj/BblepleFcuVhbEM++SXjOGRr
NQ17iCjAp6D+taV949DVm38rlFUR7meIJxbajANLapfpj8mj4LR4t+XX3XGo
iC/kkLZSAjP0dWXH03GIWbUTchhXApVm1//uZI2DwMr3nO4/x4B2qnr56OI4
KAzu4JzlROB5yPh0sddviPEdGy69fBxsnbOdJ4J/Q9Dut8o6qcfBqIQxhi/2
N1wT7bVlXTsOytpp8+7Vv8FwiF9u21sVWLX5F6XMMgFKOkziLv9U4Xba85mS
kAl405soxf9TDSznx3ZNxU2ARwDneK3mKbigrHSSP28CiooFZ768PwXyjYMR
np0TEHQheIzZUx3mJw6pwu5JsNyuo+1zUBMcDta9KE+YBLYHttGZTdowcn3E
OyZ/Es7Ls8cnq52B8zE0Nt61k/DNK2H9QMUZUKIcVcHjkxD+VnWoo+g/oNt8
N1Um8Qc+lpytfzOoAyGtj06V5fyBqhN3ZPM49YCBI1kmuvoPDPUVnThnoAcu
p6r3eLX/AUgNFWqP1YNLH9f+oqU/YLTnTOk9pXMgnHgzplRpCqYUzh2rd9KH
7Dv//SupmIIPPUU7oqkGIJJrPRLVOgW7jjtjZGcAYVP+X+4OT8Hj306F/XUG
4GZWnkAwToMi47CxqNdFUNGW1i1Rn4Y7LeEHOZcvQZsgb+rHL9NgsYdJdn33
FVgxs87ot52BR3SZO17EmIIJ6e/tjy4z4HksZ/+bHlOoKXVTfe05Aw8SDhyR
oZhB8M7ALoOgGfj0ecxh45EZ7PuSTPctfQYGXjYfQN7X4JzS2PmGyRlo+GXx
ivO+ORT9vCn0bn4G2kUOD+yrNQeBFwsT/mszkP1IfKGL1QJ+TzP4nGSfhXjn
gQrGUAvwSdibWn5wFtQ2Y7fFpFtCBvfVzXyrWbh3VVLaf8MKyKW/6l84zoJh
6wCjx2lruGNtH+rkNgu3pxukKBHWcOKT1wGZwFmgC1WKUJC3gV73N3rp72Yh
t3CDVvf2TWD+2ZsU92sWzCwtilQ47cG05LxOsPkcRLzWuU6z4Agy+Tt4dtrN
AZVO4GuS+C2ge9/T9tZ1DgRkW+1KTG5BbMyVCzkBc7By4Nxf2eZbMHTP/EpH
ytyWH0biTDKcwFTTxWb39BzsUfpnx3DfBUw7XwQku/6FnNFPenz+biDTckFT
2vsvzN8UM1P/7AZ09TvZiwL+wvO+K/9Nc7lDbFHU088Rf2HYMHwy9ZU7DEUl
hE0V/wXq/Yajv/I8wPRaXrwszTwsiMJ6Mr0XmM1+Ky8PmIeq1tjtcxs+YOIW
fKEweB4K6Kzmtov5giG91tT78HlQ0Jgcd9b2hfOUKr7o5K31Ko1XeyJ9Qf1o
lsvdunn4vtmWp4bugaTPEwkl5gUwhsaZ3Ef3YZlbLTzHfwFepH9W23bWH+Yj
aA+nPl2AIaZf1spe/jArXFIT+3IBnio/Y09N94ffsrJ/nyUtgF29SbQ0WwD0
Gwifsa9dgMstQqtDdQFQGbNBf4hpcWueiGV/PhMIj6UK7BL9FkG6pn5U4f4T
aJDpHHMOWgRhKd97eoVPgFluyehk2CKoFp8nx00+gftHFbRGEhaByyU2rF8/
CNxVCvYL1ywCv9KP5I/iT8HqXMGPKPolGBSs8aazC4ZTtwv0XngvQU5v3dFv
siFAV16gcN9tGSSuxgvwMoYBSfx080D4CoQuqV52ORoN6tEqcTMha9B9ipbm
05548K9r6fd9vQYGp8Ti1qXi4dPslR2U+DVYFqMVOnwiHk6ecH9yNG8NRhKy
/3laxYPKeI6rb+cahLPnKTTlx4PyEVEt8u51qLCqjl7TTgCpWqYFhYR1OPJ+
hv2mcyLYzbw43JC+DkKoUvShfyJk7BSxMsxfh8s+m94REYlwyAYPeNeug4dw
pXZYSSKIk+7U14+vA/7Ed3OVIQlELv+Ouiy5AWKUB9e1nyXB9ulGNa+CDdj+
4M3ajzfJEP6s7Op42QaoCKWujGYkww7ZbA+9ug0w/1B9t7t0C995mb2vewNu
h4rcDvqeDLvoTflbVjZAtMeRWWLPO+DfvrQgiDahwbzfgvzyHYiBUEJl9SZs
0i6uhXukQOIP3nKJpk1g/j5udTIwBcTub+sNa9+EVaHjbX0vU2Bf/QS39dgm
ULrHORqzUyD0wOVSFgYa/CXGLCT5ZwqE5YiKZ4vS4IXdL6sJ7VR4VVtES3+D
BrNfnl+iZ0qDmcHMO9M2NPirl1L4TlIanFpJnO21p8GJp29l7eRLg3mJ5z9y
b9Pg2IOtK12SaXAmxLrCPIAGn/k5mXxWPw3ojHb7NCTRYO/itzt2vUkDAxee
f/mpNNjtYnJfU2IavH/K7BD3nga3W134YfU+DQwr5008CmjwxPvO6yblaZC/
rwlL1tJgbk5LV4UfaWA9d5cmZIwGPy4cOevPnw6VbE63PX/TYEYPhpO1oumw
Q9RqxmqKBl+tcnWZlkiHTxfOD6ou0uCefc6Xl5XSQbBEsnyBkRZ7g0jab/10
cOkQURxiocWZpBROa8N0aJreldnMQYuvKrxUbTNNBzdhppgkCi0OqKf5e8ku
Hb75D3hdFKXFGcEXdqr5p4P42/alkwdocU34p1L6J+ngU/TZTuYQLU5sU+9O
DkkHyT8FxmxytDiiHKu+i0qHAN1gKDlBi7l3CrT4ZKfDd2u/gnfqtFiO5x2t
W0E6yD3wOBymRYsfPvx88eLHdBgqsBSwO7e1vpP7clNNOijvOb4peI0Wj6vq
Fj/sTAd1w2+Oppa02NFr8QtvXzqce20xFmdDi194zhl5D6aD9c6gJjFnWiz4
zbyKZnyLr4HQccs7tNhTwyaQ/CcdfF/m5r67S4urxobfsc6mwytK72sJv618
aEe+RS2nQ+I5Wy7bQFrcNB/ZqrSWDtnPae+9D6LFJtsPcBRtpkM9ab+VzEta
zGZVKmi8LQOWOZwVFZNp8bC/h4QqTwYwaDOn3UmjxX3te+7MkjOA+/FrgeLM
rfx+H+n12Z4B+1grt6EPtLjM+mKr+u4MkNHQd/MqocWp8oFXvfgzAAX8+lNe
QYtpPBxXXgpmwPltXO2qDbR44O9/x+1EMsD0ZKz6g2ZavLLJNnlILANs78t9
/NRKi31EOV4178sAt6q6w8ydtDj0WKDm2QMZ8IDOME6jlxbbhHCu54lnQPDx
aeqjAVo8Mnwna+1gBkR6+wY2DtNiGVUaS9FDGZBcRtng+EWLX7OIC0lJZkDu
RrLDf5O0OLeqrX/34QwoJ5RHg2dosfRuyeiJLdzo8cWgdZ4WL1SVmEdKZUBX
sWkj7z9aTDK8LH9YOgOGVxZAf50W77h8hDt+C08dfZgTRkuHdedqFle28Mrt
3fu6GOmwwtzY5BGZDNhW+P7VTlY63JpasnBmC/MsqXBe5qTD9a3VZK0tzC/f
4RPJQ4crLzdoH9zC4s43FvqpdPjJ5en4ya395HPXLAX46DDTcBJ/8BY+/vdp
n4kAHY7qLSqjbGEtmb06sXvpcMHA8Sd3t/I1cMivGt5HhxPI7x7XbvG5lqmh
ICpBh2dp31f93eJvP92XYi5Fhz9ev6ZIt4U9JO35k2XpMB+bxOycRAYE3KQP
GVekw+uvi+ZrtuoZmhbGeJCgw2G3qJruW/WOnjhwx+Y4HY61fbnMs9WPFPGS
yfSTdDiiaIzpyVa/8m/omExr0GH3uA2vcdEMaP7pcspRlw5DP2OjhnAG9Iix
Fuecp8PqAXeztLf0MHo9SnLh0lb+1GZh2S29rA1XUW6b0eEbtR5fkndmAPPe
Cw8/WNDhpA/D/ApbeiOb/l5bsabDc/mywslbejw4yD1y14kOx7lz2stwZcCZ
n4KVLre36lnAccSTfYvvlFSMnQcd7m8OCctk2er/mo7h1ft0+JaHhXk9fQYo
73z27UQoHS61S1NvXEyHK4Jvs4lwOiz7JvXQmb/p4L0vK1g+couvTjhTwXQ6
VMt91dofT4cPNJTWEb/SQUuXVMOWS4cfVZq3Cnalg+1FoTiGQjr8+LjZ+962
dAg2kfZZL6bDHm8ER+5+2Tp/bM8S01V0+Oop18Dbn9LB8NGzvNY2OpyeOKqt
npMONtWkxIi/dPiEx8u7VwLSIeiz0P2QJTqcGbsz+IVvOmS2Sps+WqXDwXvt
x3M90mF+8Cz/XXp6HFQak5Nmnw4e68/CTHjpMRvZ0c/3Qjo8lufx33eEHven
DDV1CKZDBiF8XVCBHn/h3Ah+tTMdWk7IqO48Ro/1wopKTvGkA1lPd5NVlR47
HrWOu0KfDpF2Ia5TuvR46jdfu/dIGqQn81jmOdJj7sa/pHexaXC/vew4vSs9
/vpk+6xexNb5T3eT76w7Pf5uUto9+jQNWA1rmyfv0eNHGe+UyjzSwJzLQ07k
BT1WDeu2Ob01XwRdRumeF9DjRSb69mHaNAhVLYyyX6PHkezHT89qpIK1/XXX
UhoGXHPQfLOQSAWVKJ6z7IwMOGk+osBaOhVmF20YkjkY8PqCcVnIjlQ4kyJk
PcDPgLl9JegnRlOAmfRI8cxxBmywUv5weGveenw3ajvox4DpFfeVzEe+g/lT
RNT1QAasWSS8mhj0DmyydltEBzHgdiYVGw3vd3D5fu8Kz8ut9dyJd4zN3oGS
+EXhlSQGTGgwHv+2/x38cz7nUFfPgCeD5QtospLBheM013UORmxPGXp4oyAJ
HJQVT78JZcR3Uh30suITYCX6hOlE8Dbs/OHFS6Mnb6HF/pWJaywTPjr2dHXR
8hWIB3OvOiUy4QO1UV/nNV7Bvfd+LxxTmHA/zl+jOfgK5KccG25mM+FwscWu
E38iIMr6tOy1SiYMx1g1PR0jwMp8jensEBO+llWx55tXODAYXnkvLsyMj7Nm
V/QlhsHRU8Ib/W+ZMZ1bycDSwecgG9cQUJvAjOv55Y0nSM9BctORN+sdM2aM
yn8+txQCwgVV++9nMWOBV536ytUhwLbvup54BTPmSMr9VGoUAv3bkpNdBpnx
h0uv6wNDn4HPp0N6XAIsWEsjZuQJKXjr3tXRvyzMgrd3O43xzz8FF09PyyEx
Flya4MmvVbN135T/cjdPkgUPPbpKEbV8CnqJ9smXEQs+qLnfp/V9EIj65awn
GbFg/nXRaZFTT6D+5NFkHMmCdQStVL6/CITbtZ6SXjEsmH5Yve+9ZSDs16jO
LYlnwbcNZFhyjwWCn9Z/FUrpLPiL6gLfuaGHcELveo9sKQs2fLbM+Ff6IZSb
PGM/MMiC1S0mj77r8YcC93F7kggr5soVk6s9+wDM1yWX/tvPilPKlKx/iD8A
qpfT3SAJVlyd70scYngATr6bD9nkWDE/TdbtiwX3QeYhJY5RjRX/G2L3phO8
Dxlhx9v/WbBinZPxh/1XfCEhK+LoUCorXv3zp7C+zRusVi+Ld71nxexroaLC
ed4gdZKfrzmHFet7p9yKC/OGj12xax+KWXFTVONlwUve0LaZWvbsMyvuz/Kq
p/3kBbRnSk8en2DF6h/iPgcv3wWj30NnY8TZ8N9MPecH4W4gLJugEibJhlv/
DDKTrrvBr7sWRx7LsGEaGn/uX9Ju4ESaJN9WYsPeXLKvXBvvwCPFhc7/NNlw
17FJAyrjHfjgx3Rl8wYbjj5JjRe47wqUvRJWV96x4aPzWdwlBU4QHPLo/Lt0
NuyYMOJa+NAJWOkmVOaz2HD8ubeR9IZOQPPjHV9gERsesjXs9qd1gsk3+5ry
PrPhvaZukqBzC6p37ZXimGLDcU36fEJrDgCBvrsN5tgwvfOR1tlWByj694M5
bnErPmHIx5HiAJldMT8UN9kw4yltsvBFB4gM439+jZsdF0xaWn4ssgcnnl2L
xTLs2M19L9tXqh1M+9wZ2qbAjuOvT/s5N9mC1WxX89lj7PhPkt3T+Pu2YNLy
MumnKjtuymaJjJ6/CVpBlIu8+ux48kLz4mKPDexlJX20cmXHsx/U5F+UW0Er
LbPvzo/seOXus9LR3+YwlR5xRaecHTMluUhFZpsDy6WDx/yr2bFvh1FGlZs5
4Owz8/ON7NhuklfXjN0cMkxfmLf0s+PP+tyDbbLX4VGV8Gn/TXZsmBzFPRNh
Bol2uftK6Tnw+2nJwzctzaCST41hgYkDc0rF3j+rYAYrt26UmHJz4DyBy5ba
HaZgKZJ5GAlxYCmdKmnanaZw4gFBXlDhwI92VnW0ZpqAifSXmYOnOLDABPmm
+wMTcO83aTI9zYHvPXuZ5XPJBLLl7vu16HHg0l+J0/GMJiA41rCceo0Dt9TF
bliXX4E1NYN+Uz8OrM6a50WvZQh5zLcSW+o58NDOXOvYwQsw5uHzp7SJA0c4
DE4FxV2AHbNPZdO/cuBhj5Jbm+YXwKM7rfJhNwfejIyn3pg+DydSxr6rjHPg
jPXt/9S2nYfW05e25zFzYsObsT4Op88BQ7nllTh2Trxj9fqOo9RzIC/rmvCM
mxM7eGgYuv7Qg1e7Q4/Y7uDEKjSXss/d0YOrf5r+27efE38zXZXzyNCFmaDj
ARGnOPGuguaTzYfOgjC9zhf/05z4T+RUzttNHTjneoXq8h8n9jVgPT3wVQcK
jd3jdS9w4tyzoTMvXHXASyqvnM2CExcb3r1S+PQ/4Gzd/++uHydOj7qz/N+i
FkhQuK1Mazhx3IPXRx//pw6874vTEuo5cbaxcK0kozqsqFtM/2rixLcatFnD
ik9BnUepk10HJzZaeb47TfwUXBux8fL4yYm9RURG6khqEJVTHxrGwoVfTVc6
mtCdgPvazp3dHFz41Cpz95MqVbD5KbhrDw8X/sqE8s0fqIIS3+3ouF1cOM6V
oZvMpgodvmIpmQe58G7VdcOj/CrAqXuvrEGbC0f08vwzNsWwMCFJx6nLhfVv
TFDCDmHoe9Bz4ux5LjzT4/C0Yg4g5YN0Q+cVLjwy+onRSBRATWjw24gdF664
H87MHk6A54zy741nXDhJ+B+FIUsJrgf+klAJ48LD9b8F6gyUQEsk1O7BKy7s
RXEVe0yrBLsMJubZ4rgwIa7oxnr+KOSXRWzuyOXCNbDfIopVEaaDFslHOriw
wWvyIG+MHEzO8Fce6uHCNC0lrOGX5eC37im7/d+5MPOm78Xe7XIwQg2v3zPG
hZfDM43DQ2Sh581RT+ZFLpzAGBVfHHwETC+U/p1i5cZlj/2nD2VIw9UAXc1J
dm78oSnoSpeTNJh8GIsZ5+TGZHlGzX3K0mDEx3VmhIcbPyY5nU9rlAKDAePk
7l3c2G6974LO78OgbUFrVC3Ojf8Lq+Y5XCMBWuEvciokuHFHyb2Y5OsSoFl/
gLVMcgsXfqw/xiQB6gd1Cz7IcONY5cD+OO2DoDIdS3qvtIUXb36S/HkAFF1P
fIrQ5MbjuoEKA5r7QCG5a/dLLW7Mqf+iIGtVDOS7bW6FnuHG90pLNm+li8GR
Yy8En+py49frogdLecW25vGo2/1L3Ni7l6dfdEIE9vr7H7az4sa1nz66KlUJ
g2OHrKepDTc+Oy/WK39PGMpFhxr1bbmx8N4xu0VVYbhSrWyl7MiNg4MJsYJa
IXhFOxfP4saNS7KH7zF1CQKPh+Gu+IfcmMM30d5Olh+ufma58fIRNz5nOHho
o2EPZO4qKAh8wo0FP8cNdJjugTMfSPoOz7jxiV/7hAzCdkPg4qenKIIbd34J
aj3Kzgd0DtKM3cnc2CJr4V2w1A44W/5drzGFG7PMxkSI92yHGK7HsWVp3Lg+
r2Gm+/52QBljkJjJjZ16LHJs+qngNvHa7VYhN3Y/XriX6zUF5q5vm+Go48ak
REauqpO8cDwvB9E2cGPNI2eq9Dd5IJjh6pP5z9z48Pfb9i0feEAyrli89ws3
psR141vSPGA1aH89uZMba5yYGhc7SIKhS709Kj+5cUOF/i7Fx5zATlxIMhnn
xg4Ku9MMuTlBTqDtlucENw7rc+M7FcYBAcMN7EXT3Lg/Kb3wfBI7HLYpQtLL
3Hj0roBBdT8reNyNiBVgIWHndCcmsZdMkGhMsSPYSFj4o7X2Ljkm+HL82bHL
HCR8tE+s3evbNhDe9vBbGImEq56Z3Hm0fRvUBd3exrmLhJe/rucLZTAAJeaC
1Zo4Cb/fY6x2aScdIN82+V2HSJjxjIwFaqQFy2v/0SseJuG1cb5FLW9a+Lj/
VOStI1v494Er3RM0YJol3/z7GAl/l5L/ci9mEz1+nv2KGZFwO4u11fYdmyjP
WdJCDJPwlfoV5cpnG4hZSYzG9AQJ8yvVmuFH6yijkiLTrUXC67d5PLaHraKu
+Gcbi2dIWIjpzr/IPauI1p/jM/ksCZd27XtBm7SCzp1mvKajT8KzM17vtMv+
odW2+Re1RiRsKZ5JKDMuI/XRtn95tiRsZ3tpgvXHPLp7MMj9vT0J775mpVH7
cB5lO6ivJzuS8E6pq7dbjswjvo2PNJEuJLzxW/p5waO/aIqayOTrScJpjMff
GGvOob1GJg/dvUn4zJAHE8v6LDKI28Xm7EvCM/e9RPszZ1HF4aecln4kbP76
g8kC3ywKVb9NORNEwka808rTG9OoPkjm5algEtaNLVfhdplGG98mdxwPIeEC
+/hY9ekpZHH16m7ZMBJO9RgVHvr5Bym5ae7d9YaERV9w/ZyemUCDqbulx9JJ
ONTynru74S9EmevIHnhPwuURQsItsz+RpuIz2e4sEq5gfJTcEvAT5VQzKjbm
kfDKeiQqKR5Dfv1TKLuEhKPCHXbFyI6i4r3vylPLSNgmVbMio2MEzdwwU0mo
IOGg9ly6Y24j6OJi58nwGhJ2WE16nF8zjCS4KrQ8m0hYbPIzd8LNIXRV373Z
9cuWnhR3mLLxDaGw13I6Dl9JOPzmJY+a+h9oc1+K3rV2Eo4O+WgidPAHasXP
L2n2k7DOdiOX4X8D6LbjdUvqny39LXwam8jqRQGnpyyUpkl4tMdwDPb3opci
rhZXZkkYhkj7WN72oPyOAPPEBRL2mUvvaY3oRn+V0q7Jb5DwU1fFvYeTOhEd
We7aJRoeHKvwRXGHVCfi+VNi5knHg2mPmvMfKO5AUtFfTD9t48Fgq0S86WxH
tvR/Tc5z8eDNe546g/u/obt97iZuJB68ppTrRqpsQ4/zGEze8PLgIfP656JG
bSjVgmo8tp0Hv/G64dkR3op+fT5q5CLIgxn07hz3Ef2KzEK9L4ZJ8+DTm9c+
8vI1IcebLBeLjvDgA/a2WnW+jchXLcTguxwPzhAR2Wv45zOKWY67IKa0FS/+
iN50QwP6blirn6/CgyMVOBVtE+vQHzkd/Z4TPPj2jjDeT3vr0Bpn97kNNR48
nVLjGhVXi/gqfuupnebBlT2itm9SPiEDUU7dDj0ebKDgX1T8rRpZboSdXdHn
wa8MOFV/XKtGrp0CZ/kNeLB3oMug9FIVCnsorWNuyION5LsVDglXobY/584s
XuPBvVJijPeCK9CZ/NeaVBceLFF6aqjgSQmy/Gu6SbnNg2PONKX4LXxE96TE
cyluW/mU63SIm3xEhSmFeyieW/vLy+6uJIqRcHT7DK8fDz5RsuP49x0fkHJf
ZAJvAA9+PoLjmMMK0YWd1y7xBvLg3bZlxSmUwq3zYq6KJ4gHr46GvRTfXYAW
/bleksJ4sPFlO9LciTzEXdNxmhTOg5vZvjJkf8tFB+ne0JBebcUXYWZ6aZ6L
TDwkrLjf8OA9+x7/ehecgxrsNQiuRB480vP0wvRaFnpz8d4wez4PLjLrmE4w
zECFYZrh7IU8mOMRV7R5YTpqayNpsxfx4P2rnj+Nt6cj5jMx+WylW5jdla/i
eypyVCl5yPqJBwfKxJ9Jf/YOPfa6j1jreHBTQ6Z6DOM7lPTx9F+Whq3+n52L
u+yRjPrkewxZmnnwtkOU1CWHJKR2cOkwcwcPtr5mvt3cIwGZWJaOMHXx4Mkr
s++OMSYg94QHEUw9PHjmbb6Za3A8yhQg0zN959nyT8rG3/Q4tIss3cE4xoN3
qU8ofqGPRVNrVh70izy48dpFAwGRN+iiwekD/5Z48KzTC2ZGjyhUnXOwY+of
D/a3aVzQ7YxEEVaTh3vWeXA9rUn82MvX6ETXzeFMRl78+tSeq/IQgd4fOROc
yMSLw542sCRkhqNdTyWJSBZevJMeCdKKhqOZk9Nh/hy8WLlpmFuD+hK9zrHX
vELhxeuRnZ0RO1+gbVxnl/S28+Kro6208zGhyN5KOl5jJy/+Sy7OaxEPRWpC
c+uye3hxXI11xODJ52gu6FYWm+jW/p9mNDjDnyF1K5cdH2R5MdUjr7L95BOU
U3O+JkOeF9t0yelKvXqM+IUUHOMVebGxsoqR3Nwj9Ldz6fNTZV7M5JQjsJAW
iN6cvONlfoIX91Zd0714OgCxvL0oYajGi6P3S5zlLfZHTmtHu8+q82Ka09ax
k4f8kUbOigyhxYs3M58/KNnth+YFPcZ4z/Hi3JtTDuJ77iNjD8PnLOd5sbuU
GOvh+HuooVMZb17gxSXq1B89h+6h6KD1iN+XebGOqty1WXVfpLnmqV1hxosP
/XZ4lBTpjfIuGK/kX+fFPtL6bI4K3kgwB5LSLLbqoxzUupzshRZv0NCGW/Pi
GzRh21XFPdHbTp9c21u8OKhUI+H7FXc0ViM1EOTMi9lCxy+3JLkhidwBlveu
vPi2j72k0sIdlB9MGE+78+LBaVk+rqjbqFHjH4v9fV5c17h8mpXfBfEoJssG
+/HirL6qI4wBzuiC2AXjzABefL7H9nHBghMaosvLnXnMi497PH0y0XsLLRfb
Gzu82KrfLDdV46sDQikCgc9ebtWXYuaYe94B3Qtvzs2K4MUpWvSlsgP2iNNZ
gnUuihdTbliX6c/Zob2Sv3IdE3nx4sJnbYY3Nshy98uBkGRe/DT0vzntDmuU
warGmpPCi0kbS7syea2R4s84478ZvHi2Q/KvStQNdCbGmNWpgBcHR0G01S9z
FBrEKRf6gRczbD965ZiaOer2KDHOLebFhSmbZpB8HV27yJc3X8aLhwJY1d1u
X0N3eDqNneu2+qd0g4v1lCkqpfELfNHAi18tejuXVV1FDNOyeXmNvHhJl8v5
l+pVFPQ5hHWxhRffCq3WgjMmKP7+mTyXbl48Nt/e40syQr8d1wfCenmxX/SJ
k7GEITp8NY21oH9LT6nL/92wu4yKCFaTpR9b34NqlI2HL6IvizWst3/z4vCw
CHNJlguIPOokFz65le95rZq6K+fRpba9JoVTvNju6zdJ2g/6aOS9T97yHC/m
1iXfbXc7h1YsCZM7q7zYcN/4m79SukizWBw7r2/ps8rQ8krWWfSaY4egwyYv
bmkufsMtdxYpZ88NWNKTsdDXKIPVkzrIczXJ2ICNjLvDRKQStmujZu0XcI6D
jGNydE99VNdCAjG+AjpcZBws4XBb0es0Kj9hNHCKl4zfvmx41bOqgeiDeIwV
+Mi4Y88dS3WpU+jc4CY6soeMg2IfXmR8qIbiZf7wHxYgY3eraq7DYyeRWmft
d7G9ZKy2PvrqYvoJFCB49wr1IBkf5Mvr3mujgrocrRDPITLe01mxemn0ODpQ
c4Gf8zAZ61wRNJEyPY4absh8ZzxCxnzsqnEXzTFiz/lptKBExsMuH2ndJQhk
yNhOzCqTMY263c15PWWUfqFyzx9ExnsZOyb0fI6hM2uR/SMqZFxaveOyxJ+j
KPikrtE3TTJ+6taLTjEqoMGXQLRokXE7H+2PqQvySPq3xJ7GM2SsVKL34Op7
OdQaxNRfpUvGrxeu1R+wkUXkro+GOZfIWGr/wKP1nTLomniK8ntDMub8E0/7
/qk0yvN4uTv1ChnPVOcrqrBIo/NCjn2xpmQc7juBE5mkULjVPsMQKzK2SDiV
aWYkgX59JCsH2ZDxLM5PvuVzEB3lotsdaEvGi7xyc7Wp4qgnp6/Xx5GMP5bf
9HnOcwDtWX922cGNjFNOFH3QFBFD6kPaH156kPFyW/PNTAtR5FTLsr3Uk4yz
uw+jjUwR1PDMp5X1Hhnv3r1NMPbcXrTgQkhJPyBjt6vWInEZwkjQ8N+TC/5k
PCqXwjfEIYxcxBw04h+RsbqBiaZHryB6y3YoqeEJGRsz61k+0hBEjTO/GGaf
kvGzaLD3vi2A9hablBOhZDz5dy/z7it7UMt/OgqdkWSsMAFKB5/sRKuy7C/W
35Dx6pdLlVppO5DYrrq5vW/JWPtasGN+63bkMQIZ9glkvMTwPc1HloqS6lfZ
XiZt8dPs6HGxo6DWjIIbJe/I2GrjjVlvJhkduHNYlDVj6//eem1xNV507sqE
r1QmGTv5vxXMjeBB3qpJg+ezt/It2c0/OUdCHRwCkXH5ZNyS9/Bsbh438o3l
5CXKtvSYOMu0Y4Ydpfs32JtVkHHylR9Sdb/YUJeNX/PDKjLOsVKf0/zNiiQV
Nh521JLxZVMz54xtLOji7qKfa/VkLGaf5swkxIzu07qc3NtIxuyDh+32qjKh
3s9/aOxbyNimplw+JYoRbct6dyWslYy/K4o/j2xnQDJh1z9+/LalN+72CRMy
Awow6Xdl6SZjrYXEXp8EOiS70DgV+4OMTXfx2tpx0yDjngCt+mEyfrh0WsVk
boMILDuRMj1KxrTLk1dNmteJwYcfryv/JmMeJzFPn/hVgs3udpXp5JZf2Mqv
rUatEPLnZIUeTpHxKw9yTkLMP+IJf1pf+xwZR39RzjQoXyIK6S2V1ubJuFrE
9EtT3yIx8mtvuPASGf9wGSVr0S4SSjmv9exWyTgsYvY//avzxNipRw3MDBT8
4uh7cqLLLGF62kRQdBsFW+q2JNh8mSH6z8i5HGem4JmxmvpdkjPEN/0BITd2
Cj5/XSusafkPoXMx1zWMk4J5pdY2NDonic+GD5uyuSnY5xbNR2r5BFFpduTO
BJmCr1tccFJ5P04gC+YvTNsp+I3CoZHl3F/EB6t+EZGdFOw+8tMyo+onkeng
32K4h4Ir414t/FgZJaK8evc1i27F55bx9aobInbcy7z7ex8F2xk+6ZXiHCJC
/R60bROnYC6ZgeqcSz+IwCeHvUCSgmVybReBaZDY9oyh/bIUBa+rxBSkN30n
fEK7xW/LUHDC/oS+3PB+4vbrex2Z8hTMdlFZOV2nl5h/YyDRpEjBAYOqf9qV
ewi72EO+40oUfMDHLEvtSDdh/q7zkDBQ8NcfM6YhRCdxruDgg+enKDhLxEzH
qbSNaCmi6X2vQcH9ZWM7b/xtJU6Xtks1nqZsXX6H7vFKtRIqNV59DDoUnB/c
/sihrIUorTsnI6RLwR+dB0SiSS3E0cYDAcQ5Cl5d3GM8+a2ZkGprO+JiQMEc
5ndVL15pJNI6kh+GXKJgEv3fS5Jyn4l9PXcHMgwp2Cz4a7zv9gaC/8e+Rz9N
KFhfhK1ic62WYJ92HzK4QcHRYy//OOJqImBOR9HZmoJXpoz+07asIugXRYOe
3aTg0uSl++nhlcTK2pejDQ4UnOkZI1dKqiBcaBKejt2iYNp9qiztF8uJWXq3
UToXCk6vaLbw0C0jfrGKPDvmRsE/Gw53//jwkbjG+W/sggcF5x1Z87HyKSYG
SM3KTp5b/RmpifHVLyI6dtz+leZLwcdyvgZ7ChUSVWKNwP+IgmNsy+8YKucS
mkEDmtQnFEyzqe1UZpVDtCzM6XM+pWC/n2+79r/NJr5X77TZCKHghWcOS79E
sohrEodcF0Mp+HnJoz/ZDpnExHPsOxVGwQxdRUfbAt8Ty6YW4d9fbelnr/wl
Jdp0wrPBLa4jkoLnmc/SwZdUglEmKKP5DQXX7XwfK/MuheChzasujd2q/86S
ewe8kgmJaLrZNykULL9xNXUlKZ7I3kZdC0uj4MN7vqDN+jjiqO0BpqcZFHyU
pCbSMR9LqBE6e7yyKfjGLzP7VLO3RFO82X7XXAq+X1TsyJIUQ5xjdz1il0/B
hbQfX80ORxNXe6M0jIsoeNGlnKZVKYr4pZJ17sJHCjbg61gtWXlN2KZUG/9X
SsHCuy6MxtS+IjzuTDhDJQWbBp5bOOcXToRtPxor0EDBV0odVDICQ4ndXlrp
2xsp+G5AwS7LhOdE3JhxIVczBT90W/gYUR9CZOb5NW9+pWABowjRKYlnhMKe
V91LbRR8PGZI94p1MFF6P31kun0r/9iTHyrMnhKf9b6tDHRTMJ1QUFJe6mNC
t/gnY1cvBb/m3yPocP0R0SW8yt3ST8FRj9pFfksEEmOzQvvKf1Cw/dU7I7+H
/AmaYDu9mHEK9nXiHuDrv0f4LfleCZ/Y8tt3r1vPFn0JDuOwG8F/tvzxH3PY
1E5fYpdkiZf37JY/BINF6zy8ibcvWgJv/6XgwVuPyYyuXsT+9eEX9gtb/owM
1MKMnoRcI2uayb8tPh/4Wc+edSc+HuEvMFilYHp0s6KHw41QeS1dqbNOwU6n
d7WEdN0mdKwMujAtFd9L28hUCnMhOr5aDyvSU7Ht3B0NrgBnwuio15QUIxWz
rlVf6n3gRFgxJzIIsVAx54nT16/EORKf6QKeqLJR8RNhpq437x0IifUbVHMO
Ko5nFpTMqLUnpmcP7U8lUbFj7KqShIwtoTPJldXES8V7+mZ0OmNtiOyx2aMz
FCq+VedPz7vPmnDqzTstt4uKN5HRVKK5JdHe/vLbhd1ULEvS09UWtCDkW+4Y
ufFTsep4aK/A7+vEcjVhVyZMxe9W+Sw0U82Ii2UCyz9EqJjDWn5K4a0pUfSB
1odhHxXLaAX8dY+/StzNqAnROEjF6hlfZbneGhPfk5P4bA5t/a/ezqkyY0Tg
uIfxQYe34sdXjljoGxJ04dr5bUeoeH9Iv7yZ0UXCLOQwLMpRcatjz+/jGxeI
6sekuh2KVEzvX8EsmnWe8PNp7zZSpuLGHyUF9zTOET/dC0y9ERU7B+zYNDqk
R6i7REzEYipmi7t5/J+ALsFmbbT+8wQV0/QmP34hqUPYXAc/1lNUfOSdFL9b
yBmi2ViI65AGFSt9Lw8cHtAigs+NCjpqUzFkTtzUKNUgZs/Uvgv9j4oZK0XY
2bTVCV2NdzIFZ6k4r3dV1H5ajaCgmyfW9Km4T39IlLA+Qbgo/tfEb0DFgSWe
Cc0qqkSXjPT545e2+nVss05fXIV4tW/Bwu8KFWdZ7onjFMPEqlDnTLIJFXej
S8buDogw3P3hzmdTKn5Vq36+MFOZECDdfcRtsRXfyfy/h65HCW82Y/KRG1R8
dfX1ybg1BWKI8XiUvjUV8/QP+SWGyRPxKwzvX9lRsedrbYsdjLIE48KYQokD
FYu+mff37pQhzKfrygduUbFCpERhVZE0cWDkcavIbSoe035nm2pymAj8bnv5
lBsVn9tl+9+qzyFisktn5IYHFZ+u+FtuVnqQyGgiL2Z4UzHd2xMPKn33E1x1
i55ffan44ZeD/5iZ9xH2lV1M8/e3+veh2HdbnCjx9WNRMNWfinernDB7oitC
yBRE7jz6kIoPzjhoe1H2Es+zPGMvP6LilQmtpMbfQsR8qslBzydUTOyRaL/1
VZAoiBEhqp5R8XrpXQPqmz2EyOYJ94rnVHxl6LNs+RgfEWx0/UPZCyo+Nn9b
MeLULsJyV6Lcx4gt/adfXOrX2k58u/3pVtFrKuYTjjj2d4pCHO8cyyqM2tK3
PsPph/FkYlfoPsm8t1RsMXthTkyNh/CbO2WTE0fFIcNDGmpSJGJOxzIlK4GK
zd7FfiCLcxOfOd6JZbyjYvfnjMHfQ9gJRZv6a2mpVPxHS0q9r4eViG8Yj01J
p+Khh2QRWmUWwsNfXCApa6tf7gyRxie2Eb9GNY0Scqj4h+Chx+RxBkL/hPXr
uDwqfsTgFzn6lp6ojH3U/baAiqMKx20Lb9IRkrRp22M+bPFr0VTxOU1LvDJu
1H9TTMX95UqEihINsa108nlkCRUbxajdpThuKA+4HeKOqKBicqWArOGnFWWt
bu0zL6u2/Jcurlm3859yoYLt4xc1VNzMxD+a7rekLBIW1PC8lopJnxZKo9gW
lYPnM5hD6qk4yTaKqpw0r7ym+0Ut+DMV37nnWQAGf5VvZE3fD2qiYs2WMVaH
PXPKKrZStI++UnGtiaNXbNm0Mt9Bh7v+7VT84g/HzbLPE8rzP7P+3eve4jvq
H86i80u5MX7O2bufilO6LtZNoVHlhKtH5jx+bPnVR8xG5/GQsie/k+2dUSre
+eQH35VDg8rne3N/O49Tsb6QxOmfUn3Kh8MXzB3/ULFy8cnU+Yddysz68sP/
C3wDg/xu8RZAWXJQaJpW1TzhEXdfa/UWQA4APeA/idI8us6322f5FkC+w+F6
0BXQPJKL+Fdk/RZAtr+7qCXjyzxrSDnUYAEXQMbuwuQHJsg8HMK6zFkJF0Cb
1dhKZgzCPM47PMVSERdAe24DCbDbujyKuHX7RhMXQDOrhNup9rg8RzWvMTsV
F0CfCpz6MjK3PMAuIp4jGRdAZMMf6ccCtDyzIQh39CAXQPa9T5HQrq08cJ5B
regiF0ApYfrco4arPCwbe+PcJBdAApenWaiEqTymFO5PxSgXQBxykxJm6aU8
mAfUKJYwF0Dq+/h30xigPFWEDV+KMhdA01IF7DbInTwSAUeVfjQXQJDwdd3Q
ips8i/q5AWc4F0BJ+9jIZoiXPH7tn9o3QBdA47mrhAcdkTxj02uM2U8XQCFL
h5qVz4E8IFClws1RF0C8GY7MgmOAPNzM3vjBUxdAfsG8EEEmfjxWxlFlqlcX
QB2F28khe3k8SLk3PntfF0Azh7Ft0R5yPC6fA/AcbxdAlGaX/hX+YTz4aptT
YI4XQFcqpRVhX0A8j3qjB3+QF0DmEL5EYX49PCaKq7udkhdAnrXK79WMOjxV
qbsj25YXQB+9J4F0ejU8sufb81WfF0Bt/oUrieorPGxkHJRLsBdA2192Ue/k
FjzgXZ3UNtIXQHGAB8usAes7yFCfVQ0WGECva/gkTEeDO2I5PKenlBhAi3uL
WMS+XDpp7c313JYYQEXNI+3x+1Q6cKFfRBKZGEDrjmljontOOn8Jg+F8nRhA
9elwgNioPzqc2ckbUqYYQImZ80ZI5R861nlXkPy3GEDsWoF7rGzXOUq6cnlR
2xhAgSnEyZT4HDlRbgTIht0YQH3LUTbTqw45WCKWFrzfGEDwDNRKF9X/OGeK
ubMm5BhAwC25h2AI4DiEWgDu++wYQBbn98kDqZc4vvqNYqb+GEDiePlqam7X
N8WuH7HbABlAZ/i04vPawjfMYrH/EAMZQKqpjqOZJ5g328rUnHsHGUDspThF
mONTN/iaG9dQEBlADACUmumk6Tb/Tq0lhhIZQPT4nhkWm8c2BgM/dLsUGUAx
c7eJT567NhRrYhEmGRlAkGek/US3tjYbH/RfWxsZQIYQZLmiL3A2ItOFrpAd
GUBKWXuKV4BSNiqHF/3FHxlAljz9Sb74wDUxO6lL+yEZQAAAAACAmAkzKgwO
Jg==
"]]},
Annotation[#, "Charting`Private`Tag$1260#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00Y7BjD4YB+UI3lrxqT19jD+xE8xm6dN
2g/nWx/14nIqvgDnF1T5JW4uuAHn5+5I7WNSfgDnX3nhybk86Qmc36X/jWFb
5As4v1D7xNQDS9/A+b+Ss9fdzfsA5yftDQuYkPYJzk/+eOXAgY4vcH6Pwfb8
ZW3f4HymA9vNW6p+wPmCWt7n7s/4Bed7zHda/GHSHzhf/P0Zt/rt/+D8Wcd3
MTJnMjjA+Dayjv8VUhjhfO0HAk9qS5jg/LUrhDK2FjHD+TX3Yi9rt7HA+YU2
Ft7zprDC+b/muyS9nsAG518omJVQvogdzrd0V/p3dyEHnH/S1XKFwxxOOH/p
xpmWj1ZzwfmiyjpZcSu54fxLjBxNknt44PytHMXLLpzkhfN1RAWyko7ywfnv
+76JGF/jh/OV29v187ME4PxHUbdvOT1H8D2eXv65NU8Qzq8oSs0Qe4vg+22b
7SVWJgTnv/uTVcP8DcFfeL1xS16xMCI8MmwTKn8j+LJ/J0YXVonA+c/cu09x
sIjC+YfVztjLdSP4WRzLWBQ5xeD87QtUbA9PRPDPWdscDRIUh/N/ZM0OTuhD
8E8EzA/lFZOA85MsbZYvn4Lge+0qqgy8jeAbWq/0/q0oCecDAKiD9UY=
"]]},
Annotation[#, "Charting`Private`Tag$1260#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"time \[Tau]\"", TraditionalForm],
FormBox[
"\"Normalized Bell Correlator \\!\\(\\*SuperscriptBox[\\(2\\), \
\\(L\\)]\\)\[CapitalEpsilon](\[Tau]) | L = 8 r = 1\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->NCache[{{0, 2 Pi}, {0., 1.}}, {{0, 6.283185307179586}, {0., 1.}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.887879285716263*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"457b1311-d72a-4ae4-85f3-a18cabdbc3be"],
Cell[BoxData["\<\"============================================================\
==================\"\>"], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.8878792857396317`*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"9c899562-0421-4e69-8edc-6edfb5be488f"],
Cell[BoxData["\<\"\[CapitalEpsilon](\[Tau]) = \
\\!\\(\\*SuperscriptBox[\\(2\\), \\(\\(-4\\) \
L\\)]\\)|\[Epsilon][\[Tau]]\\!\\(\\*SuperscriptBox[\\(|\\), \
\\(2\\)]\\)\"\>"], "Print",
CellChangeTimes->{
3.88787605297192*^9, {3.887876086678011*^9, 3.887876101117405*^9},
3.887876302984541*^9, 3.8878763564835987`*^9, 3.887876432845742*^9,
3.887876486944934*^9, 3.8878765228713493`*^9, {3.8878766034996977`*^9,
3.887876701606689*^9}, 3.887876792252232*^9, {3.887876862900153*^9,
3.887876892819797*^9}, {3.8878769512802143`*^9, 3.887876957870161*^9},
3.887877105941203*^9, 3.8878772119284153`*^9, 3.887877413555241*^9,
3.887877549736006*^9, 3.887877674724492*^9, 3.887877741097035*^9, {
3.8878787169477167`*^9, 3.887878746278522*^9}, 3.887878797861391*^9,
3.887878835381641*^9, {3.887878972230589*^9, 3.887878997665687*^9},
3.887879285741531*^9},
CellLabel->
"During evaluation of \
In[17]:=",ExpressionUUID->"3b454c03-56c8-42d6-932c-e301d21d2c75"],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"L = 8 r = 2\\n \[Epsilon][\[Tau]] = \"\>", "\[InvisibleSpace]",
RowBox[{"4096", " ",
SuperscriptBox[
RowBox[{"Cos", "[",
FractionBox["\[Tau]", "4"], "]"}], "6"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"3", " ",
RowBox[{"Cos", "[",
FractionBox["\[Tau]", "4"], "]"}]}], "+",
RowBox[{"2", " ",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"3", " ", "\[Tau]"}], "4"], "]"}]}], "+",
RowBox[{"\[ImaginaryI]", " ",
RowBox[{"Sin", "[",