-
Notifications
You must be signed in to change notification settings - Fork 3
/
test.hs
615 lines (478 loc) · 17.1 KB
/
test.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
-- sayHello :: String -> IO ()
-- sayHello x = putStrLn ("Hello, " ++ x ++ "!")
removeFst :: Eq a => a -> [a] -> [a]
removeFst c [] = []
removeFst c (x:xs)
| x == c = xs
| otherwise = x:removeFst c xs
count :: Char -> String -> Int
count c [] = 0
count c (x:xs)
| x == c = 1 + count c xs
| otherwise = count c xs
blowup :: String -> String
blowup = blowup_from 1
blowup_from :: Int -> String -> String
blowup_from count [] = []
blowup_from count (x:xs) = rep count x ++ blowup_from (count + 1) xs
rep :: Int -> Char -> String
rep count x
| count < 0 = error "cannot repeat fewer than zero times"
| count == 0 = []
| otherwise = x : rep (count - 1) x
srtStrings :: [String] -> [String]
srtStrings [] = []
srtStrings xs = m : (srtStrings (removeFst m xs)) where m = mnmString xs
mnmString :: [String] -> String
mnmString [] = error "empty list"
mnmString [x] = x
mnmString (x:xs) = min x (mnmString xs)
prefix :: String -> String -> Bool
prefix [] ys = True
prefix (x:xs) [] = False
prefix (x:xs) (y:ys) = (x==y) && prefix xs ys
substring :: String -> String -> Bool
substring xs ys | prefix xs ys = True
substring xs (y:ys) | substring xs ys = True
substring _ _ = False
lengths :: [[a]] -> [Int]
lengths xs = map length xs
sumLengths :: [[a]] -> Int
sumLengths xs = sum (lengths xs)
ldp :: Integer -> Integer
ldp = ldpf primes1
ldpf :: [Integer] -> Integer -> Integer
ldpf (p:ps) n
| rem n p == 0 = p
| p^2 > n = n
| otherwise = ldpf ps n
primes1 :: [Integer]
primes1 = 2 : filter prime [3..]
prime :: Integer -> Bool
prime n
| n <= 0 = error "not a positive integer"
| n == 1 = False
| otherwise = ldp n == n
sieve :: [Integer] -> [Integer]
sieve (0 : xs) = sieve xs
sieve (n : xs) = n : sieve (mark xs 1 n)
where
mark :: [Integer] -> Integer -> Integer -> [Integer]
mark (y:ys) k m
| k == m = 0 : (mark ys 1 m)
| otherwise = y : (mark ys (k+1) m)
primes2 :: [Integer]
primes2 = sieve [2..]
oddsFrom3 :: [Integer]
oddsFrom3 = 3 : map (+2) oddsFrom3
primes3 :: [Integer]
primes3 = 2 : oddsFrom3
running_product :: Num a => a -> [a] -> [a]
running_product _ [] = []
running_product p (x:xs) = prod : running_product prod xs
where prod = p * x
prime_prod_plus_one :: [Integer]
prime_prod_plus_one = map (+1) (running_product 1 primes1)
non_prime_prod_plus_one :: [Integer]
non_prime_prod_plus_one = filter (not . prime) prime_prod_plus_one
pdivisors :: Integral a => a -> [a]
pdivisors n = [ d | d <- [1..(n-1)], rem n d == 0]
prime_pairs :: [(Integer, Integer)]
prime_pairs = pairs primes1
where pairs (p1:p2:ps) | p2 == p1 + 2 = (p1, p2) : pairs (p2:ps)
| otherwise = pairs (p2:ps)
reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = reverse' xs ++ [x]
splitList :: [a] -> [([a], [a])]
splitList [] = []
splitList (x:xs) = splitPrefix [x] xs
splitPrefix :: [a] -> [a] -> [([a], [a])]
splitPrefix p [] = []
splitPrefix p (x:xs) = (p, x:xs) : splitPrefix (p++[x]) xs
diff :: Eq a => [a] -> [a] -> [a]
diff [] y = []
diff (x:xs) y
| x `elem` y = diff xs y
| otherwise = x : diff xs y
addElem :: a -> [[a]] -> [[a]]
addElem x = map (x:)
powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs) ++ addElem x (powerList xs)
data S = Void deriving (Eq, Show)
empty :: [S]
empty = []
genIntersect :: Eq a => [[a]] -> [a]
genIntersect [] = undefined
genIntersect [x] = x
genIntersect (x:y:xs) = genIntersect ((intersect x y):xs)
intersect :: Eq a => [a] -> [a] -> [a]
intersect [] y = []
intersect (x:xs) y
| elem x y = x : intersect xs y
| otherwise = intersect xs y
genUnion :: Eq a => [[a]] -> [a]
genUnion [] = []
genUnion [x] = x
genUnion (x:y:xs) = genUnion ((union x y):xs)
union :: Eq a => [a] -> [a] -> [a]
union [] y = y
union (x:xs) y
| x `elem` y = union xs y
| otherwise = x : union xs y
stirling :: (Eq a, Num a) => a -> a -> a
stirling n k
| n == k = 1
| k == 1 = 1
| otherwise = k * stirling (n - 1) k + stirling (n - 1) (k - 1)
bell :: (Num a, Enum a, Eq a) => a -> a
bell n = sum [stirling n k | k <- [1..n]]
listPartition :: Eq a => [a] -> [[a]] -> Bool
listPartition xs xss =
not (any null xss) && matchConcat xs xss && areDisjoint xss
matchConcat :: Eq a => [a] -> [[a]] -> Bool
matchConcat [] [] = True
matchConcat [] yss = False
matchConcat xs [] = False
matchConcat xs (ys:yss)
| containsAll xs ys = matchConcat (deleteAll ys xs) yss
| otherwise = False
containsAll :: Eq a => [a] -> [a] -> Bool
containsAll xs [] = True
containsAll xs (y:ys)
| y `elem` xs = containsAll (delete y xs) ys
| otherwise = False
delete :: Eq a => a -> [a] -> [a]
delete x [] = []
delete x (y:ys)
| x == y = ys
| otherwise = y : delete x ys
deleteAll :: Eq a => [a] -> [a] -> [a]
deleteAll [] ys = ys
deleteAll (x:xs) ys = deleteAll xs (delete x ys)
areDisjoint :: Eq a => [[a]] -> Bool
areDisjoint [] = True
areDisjoint (xs:xss) = any (disjoint xs) xss
disjoint :: Eq a => [a] -> [a] -> Bool
disjoint [] ys = True
disjoint (x:xs) ys = not (elem x ys) && disjoint xs ys
-- newtype Set a = Set [a] deriving (Eq, Ord)
-- type Rel a = Set(a, a)
listpart2equiv ::Ord a => [a] -> [[a]] -> [(a, a)]
listpart2equiv _ [] = []
listpart2equiv dom (xs:xss) = (part2equiv xs) ++ listpart2equiv dom xss
-- Creates an equivalence relation from a partition. Creates a
-- set of all possible pairs from the given set.
part2equiv :: [a] -> [(a, a)]
part2equiv [] = []
part2equiv (x:xs) = (allPairs x xs) ++ part2equiv xs
where
allPairs x [] = [(x, x)]
allPairs x (y:ys) = (x, y) : allPairs x ys
equiv2listpart :: Ord a => [a] -> [(a, a)] -> [[a]]
equiv2listpart _ [] = []
equiv2listpart dom ((x,y):xs) = mergePart x y (equiv2listpart dom xs)
mergePart :: Ord a => a -> a -> [[a]] -> [[a]]
mergePart x y xss =
let
xi = whereIs x xss
yi = whereIs y xss
in if xi < 0 && yi < 0 then (if x == y then [x] else [x, y]) : xss
else if xi == yi then xss
else if xi < 0 then insertAt yi x xss
else if yi < 0 then insertAt xi y xss
else mergeParts xi yi xss
whereIs :: Eq a => a -> [[a]] -> Int
whereIs x xss = whereHelper 0 x xss
where
whereHelper :: Eq a => Int -> a -> [[a]] -> Int
whereHelper n x [] = -1
whereHelper n x (ys:yss)
| x `elem` ys = n
| otherwise = whereHelper (n+1) x yss
insertAt :: Int -> a -> [[a]] -> [[a]]
insertAt i x (ys:yss)
| i == 0 = (x:ys):yss
| otherwise = ys : insertAt (i-1) x yss
mergeParts :: Int -> Int -> [[a]] -> [[a]]
mergeParts i j [] = error "cannot merge parts that do not exist"
mergeParts i j xss'@(xs:xss)
| i == j = xss'
| i > j = mergeParts j i xss'
| i == 0 = insertAll xs (j-1) xss
| otherwise = mergeParts (i-1) (j-1) xss
insertAll :: [a] -> Int -> [[a]] -> [[a]]
insertAll xs i [] = error "cannot merge parts that do not exist"
insertAll xs i (ys:yss)
| i == 0 = (xs ++ ys) : yss -- should not need to nub this
| otherwise = ys : insertAll xs (i-1) yss
---- Change
type Part = [Int]
type CmprPart = (Int, Part)
expand ::CmprPart -> Part
expand (0,p) = p
expand (n,p) = 1:expand ((n-1),p)
nextpartition :: CmprPart -> CmprPart
nextpartition (k, (x:xs)) = pack (x-1) ((k+x),xs)
pack :: Int -> CmprPart -> CmprPart
pack 1 (m,xs) = (m,xs)
pack k (m,xs) = if k > m then pack (k-1) (m,xs)
else pack k (m-k,k:xs)
generatePs :: CmprPart -> [Part]
generatePs p@(n,[]) = [expand p]
generatePs p@(n,(x:xs)) = (expand p: generatePs(nextpartition p))
part :: Int -> [Part]
part n
| n < 1 = error "part arg must be >0"
| n == 1 = [[1]]
| otherwise = generatePs (0, [n])
change :: [Int] -> Int -> [Part]
change coins n
| 1 `elem` coins = error "One cent coin is assumed. Do not supply it"
| n < 1 = error "Cannot give change of less than one cent"
| n == 1 = [[1]]
| n `elem` coins = generateChange coins (0, [n])
| otherwise = generateChange coins (nextCoinPartition coins (0, [n]))
generateChange :: [Int] -> CmprPart -> [Part]
generateChange coins p@(n,[]) = [expand p]
generateChange coins p@(n,(x:xs))
= expand p : generateChange coins (nextCoinPartition coins p)
nextCoinPartition :: [Int] -> CmprPart -> CmprPart
nextCoinPartition [] p = error "Ran out of possible coins (should not happen)"
nextCoinPartition coins (k, (x:xs)) = packCoins (newCoins coins) ((k+x),xs)
where
newCoins :: [Int] -> [Int]
newCoins [] = []
newCoins coins@(c:cs)
| c < x = coins
| otherwise = newCoins cs
packCoins :: [Int] -> CmprPart -> CmprPart
packCoins [] (m,xs) = (m,xs)
packCoins coins@(c:cs) (m,xs) = if c > m then packCoins cs (m,xs)
else packCoins coins (m-c,c:xs)
changeEuro :: Int -> [Part]
changeEuro = change [200, 100, 50, 20, 10, 5, 2]
injs :: [Int] -> [Int] -> [[(Int, Int)]]
injs _ [] = [[]]
injs xs (y:ys) = all_injs y ys xs []
all_injs :: Int -> [Int] -> [Int] -> [Int] -> [[(Int, Int)]]
all_injs _ _ [] _ = []
all_injs y ys (x:xs) xps =
let
rem_xs = glue xps xs
lists = map (\z -> (x, y) : z) (injs rem_xs ys)
in
lists ++ (all_injs y ys xs (x:xps))
glue :: [a] -> [a] -> [a]
glue [] xs = xs
glue (x:rev_xs) xs = glue rev_xs (x:xs)
perms :: [a] -> [[a]]
perms [] = [[]]
perms (x:xs) = concat (map (allPerms x []) (perms xs))
allPerms :: a -> [a] -> [a] -> [[a]]
allPerms x pys [] = [glue pys [x]]
allPerms x pys (y:ys) = glue pys (x:y:ys) : allPerms x (y:pys) ys
-- not convinced this is the prettiest way to do this (see below)
stringCompare :: String -> String -> Maybe Ordering
stringCompare [] [] = Just EQ
stringCompare xs [] = if allAlpha xs then Just GT else Nothing
stringCompare [] xs = if allAlpha xs then Just LT else Nothing
stringCompare (x:xs) (y:ys)
| not (isAlpha x) || not (isAlpha y) = Nothing
| otherwise = case compare x y of
EQ -> stringCompare xs ys;
LT -> if allAlpha xs && allAlpha ys then Just LT else Nothing;
GT -> if allAlpha xs && allAlpha ys then Just GT else Nothing;
stringCompare' :: String -> String -> Maybe Ordering
stringCompare' xs ys = if allAlpha xs && allAlpha ys
then Just (compare xs ys) else Nothing
-- if we only care about significant characters
stringCompare'' :: String -> String -> Maybe Ordering
stringCompare'' [] [] = Just EQ
stringCompare'' xs [] = Just GT
stringCompare'' [] xs = Just LT
stringCompare'' (x:xs) (y:ys)
| isAlpha x && isAlpha y = Just (compare x y)
| otherwise = Nothing
allAlpha :: String -> Bool
allAlpha = all isAlpha
isAlpha :: Char -> Bool
isAlpha x = (x >= 'a' && x <= 'z') || (x >= 'A' && x <= 'Z')
data Natural = Z | S Natural
deriving (Eq, Show)
plus :: Natural -> Natural -> Natural
plus m Z = m
plus m (S n) = S (plus m n)
leq :: Natural -> Natural -> Bool
leq Z _ = True
leq (S _) Z = False
leq (S m) (S n) = leq m n
gt :: Natural -> Natural -> Bool
gt m n = not (leq m n)
lt :: Natural -> Natural -> Bool
lt m n = gt n m
subtr :: Natural -> Natural -> Natural
subtr m Z = m
subtr Z _ = error "underflow"
subtr (S m) (S n) = subtr m n
quotient :: Natural -> Natural -> Natural
quotient m Z = error "div zero"
quotient m n = if m `lt` n then Z
else S (quotient (m `subtr` n) n)
remainder :: Natural -> Natural -> Natural
remainder m Z = error "div zero"
remainder m n = if m `lt` n then m
else remainder (m `subtr` n) n
catalan :: Int -> Int
catalan 0 = 1
catalan nplus1 = catalan_sum (nplus1 - 1) 0
catalan_sum :: Int -> Int -> Int
catalan_sum 0 m = (catalan 0) * (catalan m)
catalan_sum n m = (catalan n) * (catalan m) + (catalan_sum (n-1) (m+1))
catalans :: [Int]
catalans = map catalan [0..]
data TernaryTree = L | N TernaryTree TernaryTree TernaryTree deriving Show
makeTernaryTree :: Integer -> TernaryTree
makeTernaryTree 0 = L
makeTernaryTree n = N (makeTernaryTree (n-1)) (makeTernaryTree (n-1)) (makeTernaryTree (n-1))
countTT :: TernaryTree -> Integer
countTT L = 1
countTT (N t1 t2 t3) = 1 + countTT t1 + countTT t2 + countTT t3
depthTT :: TernaryTree -> Integer
depthTT L = 0
depthTT (N t1 t2 t3) = 1 + (depthTT t1) `max` (depthTT t2) `max` (depthTT t3)
balancedTT :: TernaryTree -> Bool
balancedTT L = True
balancedTT (N t1 t2 t3) = balancedTT t1 && balancedTT t2 && balancedTT t3
&& depthTT t1 == depthTT t2 && depthTT t2 == depthTT t3
data Tree = Lf | Nd Int Tree Tree deriving Show
insert :: Int -> Tree -> Tree
insert i Lf = Nd i Lf Lf
insert i n@(Nd j l r) = case compare i j of
EQ -> n; -- just leave the tree alone if it already has our number
LT -> Nd j (insert i l) r;
GT -> Nd j l (insert i r);
-- this works backwards
makeTree' :: [Int] -> Tree
makeTree' [] = Lf
makeTree' (x:xs) = insert x (makeTree' xs)
list2tree :: [Int] -> Tree
list2tree = insertAllTree Lf
insertAllTree :: Tree -> [Int] -> Tree
insertAllTree t [] = t
insertAllTree t (x:xs) = insertAllTree (insert x t) xs
tree2list :: Tree -> [Int]
tree2list Lf = []
tree2list (Nd i l r) = tree2list l ++ [i] ++ tree2list r
contains :: Tree -> Int -> Bool
contains Lf i = False
contains (Nd j l r) i = case compare i j of
EQ -> True;
LT -> contains l i;
GT -> contains r i;
tree_merge :: Tree -> Tree -> Tree
tree_merge l r = insertAllTree l (tree2list r)
-- hard to do this without converting to a list
-- tree_merge t Lf = t
-- tree_merge Lf t = t
-- tree_merge n1@(Nd i1 l1 r1) n2@(Nd i2 l2 r2) = case compare i1 i2 of
-- EQ -> Nd i1 (tree_merge l1 l2) (tree_merge r1 r2);
-- LT -> Nd i2 (tree_merge )
tree_steps :: Tree -> Int -> Int
tree_steps = tree_steps_int 0 where
tree_steps_int _ Lf _ = -1
tree_steps_int n (Nd j l r) i = case compare i j of
EQ -> n;
LT -> tree_steps_int (n+1) l i;
GT -> tree_steps_int (n+1) r i;
data Tr a = Nil | T a (Tr a) (Tr a) deriving (Eq, Show)
mapT :: (a -> b) -> Tr a -> Tr b
mapT _ Nil = Nil
mapT f (T x l r) = T (f x) (mapT f l) (mapT f r)
foldn :: (a -> a) -> a -> Natural -> a
foldn h c Z = c
foldn h c (S n) = h (foldn h c n)
foldT :: (a -> b -> b -> b) -> b -> (Tr a) -> b
foldT _ c Nil = c
foldT f c (T x l r) = f x (foldT f c l) (foldT f c r)
preorder_tree2list :: Tr a -> [a]
preorder_tree2list = foldT (\x l r -> [x] ++ l ++ r) []
inorder_tree2list :: Tr a -> [a]
inorder_tree2list = foldT (\x l r -> l ++ [x] ++ r) []
postorder_tree2list :: Tr a -> [a]
postorder_tree2list = foldT (\x l r -> l ++ r ++ [x]) []
ordered :: Ord a => Tr a -> Bool
ordered = check (\ _ -> True) where
check _ Nil = True
check cond (T x l r) = cond x && check (<x) l && check (>x) r
type Dict = Tr (String, String)
lookupD :: String -> Dict -> [String]
lookupD s Nil = []
lookupD s (T (k, v) l r) = case compare s k of
EQ -> [v];
LT -> lookupD s l;
GT -> lookupD s r;
split :: [a] -> ([a], a, [a])
split xs = (ys, y, ys2) where
ys = take n xs
(y:ys2) = drop n xs
n = length xs `div` 2
buildTree :: [a] -> Tr a
buildTree [] = Nil
buildTree xs =
let (ys, y, ys2) = split xs
in T y (buildTree ys) (buildTree ys2)
data LeafTree a = Leaf a | Node (LeafTree a) (LeafTree a) deriving Show
ltree :: LeafTree String
ltree = Node (Leaf "I") (Node (Leaf "Love") (Leaf "You"))
mapLT :: (a -> b) -> LeafTree a -> LeafTree b
mapLT f (Leaf x) = Leaf (f x)
mapLT f (Node l r) = Node (mapLT f l) (mapLT f r)
reflect :: LeafTree a -> LeafTree a
reflect (Leaf x) = Leaf x
reflect (Node l r) = Node (reflect r) (reflect l)
data Rose a = Bud a | Br [Rose a] deriving (Eq, Show)
rose :: Rose Int
rose = Br [Bud 1, Br [Bud 2, Bud 3, Br [Bud 4, Bud 5, Bud 6]]]
mapR :: (a -> b) -> Rose a -> Rose b
mapR f (Bud x) = Bud (f x)
mapR f (Br xs) = Br (map (mapR f) xs)
genUnion' :: Eq a => [[a]] -> [a]
genUnion' = foldr union []
genIntersect' :: Eq a => [[a]] -> [a]
genIntersect' = foldr1 intersect
srt :: Ord a => [a] -> [a]
srt = foldr insrt []
insrt :: Ord a => a -> [a] -> [a]
insrt x [] = [x]
insrt x (y:ys)
| x < y = x:y:ys
| otherwise = y: (insrt x ys)
-- Tower of Hanoi
data Peg = A | B | C
type Tower = ([Int], [Int], [Int])
move :: Peg -> Peg -> Tower -> Tower
move A B (x:xs, ys, zs) = (xs, x:ys, zs)
move B A (xs, y:ys, zs) = (y:xs, ys, zs)
move A C (x:xs, ys, zs) = (xs, ys, x:zs)
move C A (xs, ys, z:zs) = (z:xs, ys, zs)
move B C (xs, y:ys, zs) = (xs, ys, y:zs)
move C B (xs, ys, z:zs) = (xs, z:ys, zs)
transfer :: Peg -> Peg -> Peg -> Int -> Tower -> [Tower]
transfer _ _ _ 0 tower = [tower]
transfer p q r n tower = transfer p r q (n-1) tower
++ transfer r q p (n-1) (move p q tower')
where tower' = last (transfer p r q (n-1) tower)
hanoi :: Int -> [Tower]
hanoi n = transfer A C B n ([1..n], [], [])
check :: Int -> Tower -> Bool
check 0 t = t == ([], [], [])
check n (xs, ys, zs)
| xs /= [] && last xs == n = check (n-1) (init xs, zs, ys)
| zs /= [] && last zs == n = check (n-1) (ys, xs, init zs)
| otherwise = False
maxT :: Tower -> Int
maxT (xs, ys, zs) = foldr max 0 (xs ++ ys ++ zs)
checkT :: Tower -> Bool
checkT t = check (maxT t) t