-
Notifications
You must be signed in to change notification settings - Fork 1
/
cb_ivr.r
321 lines (252 loc) · 14.6 KB
/
cb_ivr.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# author: "Jonathan Richir"
# date: "19 April 2021" )
#Rscript
###############################
## ##
###############################
#####Packages : dplyr
# tidyr
# readr
# writexl
# stringr
# readxl
# tibble
# lubridate
# cowplot
# magrittr
# rmarkdown
library(magrittr)
#####Load arguments
args <- commandArgs(trailingOnly = TRUE)
### Import data
if (length(args) < 1) {
stop("This tool needs at least 1 argument")
}else {
fiche_val <- args[1]
input_data <- args[2]
}
#############################################################
# #
# Load and clean the data #
# #
#############################################################
### load ivr data
ivr <- read.csv2(input_data, header = FALSE, fileEncoding = "Latin1")
names_ <- as.vector(unlist(ivr[1, ]))
names_ <- gsub(" ", ".", names_)
colnames(ivr) <- names_
ivr <- ivr[-1, ]
ivr <- ivr[, -17]
# NB inversion between id and ID.Fiche variable names
ivr <- dplyr::rename(ivr, XX = ID.Fiche)
ivr <- dplyr::rename(ivr, ID.Fiche = id)
ivr <- dplyr::rename(ivr, id = XX)
### load excel files "Fiche terrain" the metadata
fiche <- read.csv2(fiche_val, fileEncoding = "Latin1") # fileEncoding = "Latin1" cfr é in variable names
date_fiche <- as.Date(stringr::str_sub(fiche$date.sortie, end = 10), origin = "1970-01-01")
fiche <- tibble::add_column(fiche, date_fiche, .after = "date.sortie")
rm(date_fiche)
## ivr vs fiche terrain
ivr$id <- as.numeric(ivr[, c("id")])
fiche_red <- dplyr::filter(fiche, fiche$ID.Fiche %in% unique(ivr[, c("id")]))
id_count <- ivr %>% dplyr::group_by(id) %>% dplyr::count()
id_count <- dplyr::rename(id_count, "ID.Fiche" = "id")
id_count <- dplyr::ungroup(id_count)
id_count <- as.data.frame(id_count)
fiche_red <- dplyr::left_join(fiche_red, id_count)
# rep fiche terrain information
fiche_expanded <- fiche_red[rep(row.names(fiche_red), fiche_red$n), 1:ncol(fiche_red)]
fiche_expanded <- dplyr::rename(fiche_expanded, "id" = "ID.Fiche")
## merge ivr data and ficheterrain information
ivr <- dplyr::bind_cols(ivr, fiche_expanded)
ivr <- dplyr::rename(ivr, "id.ivr" = "id...1")
ivr <- dplyr::rename(ivr, "id.fiche" = "id...17")
rm(fiche_expanded, fiche_red, id_count)
ivr <- ivr %>% tidyr::separate(date_fiche, c("Year", "Month", "Day"), sep = "-", remove = FALSE)
## I create two new variables for Site names, one for data analysis and one for data reporting. Only works for actual ivr df with 22 sites !
# Name for data analysis
ivr <- tibble::add_column(ivr, Site = ivr$zone.habitat, .after = "ID.Fiche")
ivr$Site <- gsub(pattern = " \\(champ de blocs\\)", replacement = "", ivr$Site)
ivr$Site <- gsub(pattern = " \\(champ blocs\\)", replacement = "", ivr$Site)
for (x in seq_along(ivr$Site)) {
if (grepl(pattern = "Locmariaquer", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "GDMO_Locmariaquer"
} else if (grepl(pattern = "Beg Lann", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "GDMO_BegLann"
} else if (grepl(pattern = "Plateau du Four", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FOUR_PlateauFour"
} else if (grepl(pattern = "Grouin", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "EGMP_GroinCou"
} else if (grepl(pattern = "Ensembert", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "EGMP_PasEmsembert"
} else if (grepl(pattern = "Brée-les-Bains", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "EGMP_BreeBains"
} else if (grepl(pattern = "Antiochat", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "EGMP_PerreAntiochat"
} else if (grepl(pattern = "Chassiron", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "EGMP_Chassiron"
} else if (grepl(pattern = "zone p", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "BASQ_FlotsBleusZP"
} else if (grepl(pattern = "zone f", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "BASQ_FlotsBleusZF"
} else if (grepl(pattern = "Saint-Michel", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "GONB_IlotStMichel"
} else if (grepl(pattern = "Quéménès", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FINS_Quemenes"
} else if (grepl(pattern = "Goulenez", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FINS_SeinGoulenez"
} else if (grepl(pattern = "Kilaourou", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FINS_SeinKilaourou"
} else if (grepl(pattern = "Verdelet", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "ARMO_Verdelet"
} else if (grepl(pattern = "Piégu", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "ARMO_Piegu"
} else if (grepl(pattern = "Bilfot", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "ARMO_Bilfot"
} else if (grepl(pattern = "Plate", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "ARMO_IlePlate"
} else if (grepl(pattern = "Perharidy", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "PDMO_Perharidy"
} else if (grepl(pattern = "Keraliou", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "BRES_Keraliou"
} else if (grepl(pattern = "Mousterlin", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FINS_Mousterlin"
} else if (grepl(pattern = "Nicolas", ivr$Site[x]) == TRUE) {
ivr$Site[x] <- "FINS_StNicolasGlenan"
}
if (grepl(pattern = "Roz", ivr$site[x]) == TRUE) {
ivr$Site[x] <- "FINS_AnseRoz"
}
}
# Name for report/plot
ivr <- tibble::add_column(ivr, Site_bis = ivr$Site, .after = "Site")
ivr$Site_bis <- ifelse(ivr$Site == "GDMO_Locmariaquer", "Locmariaquer", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "GDMO_BegLann", "Beg Lann", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FOUR_PlateauFour", "Plateau du Four", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "EGMP_GroinCou", "Grouin du Cou", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "EGMP_PasEmsembert", "Le Pas d'Emsembert", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "EGMP_BreeBains", "La Brée-les-Bains", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "EGMP_PerreAntiochat", "Le Perré d'Antiochat", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "EGMP_Chassiron", "Chassiron", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "BASQ_FlotsBleusZP", "Les Flots Bleus / zone pêcheurs", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "BASQ_FlotsBleusZF", "Les Flots Bleus / zone familles", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "GONB_IlotStMichel", "Îlot Saint-Michel", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_Quemenes", "Quéménès", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_SeinGoulenez", "Île de Sein - Goulenez", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_SeinKilaourou", "Île de Sein - Kilaourou", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "ARMO_Verdelet", "Îlot du Verdelet", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "ARMO_Piegu", "Piégu", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "ARMO_Bilfot", "Pointe de Bilfot", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "ARMO_IlePlate", "Île Plate", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "PDMO_Perharidy", "Perharidy", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "BRES_Keraliou", "Keraliou", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_Mousterlin", "Pointe de Mousterlin", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_StNicolasGlenan", "Saint-Nicolas des Glénan", ivr$Site_bis)
ivr$Site_bis <- ifelse(ivr$Site == "FINS_AnseRoz", "Pointe de l'Anse du Roz", ivr$Site_bis)
## change some variable format to integer
ivr$Nb.Blocs.Non.Retournes <- as.integer(ivr$Nb.Blocs.Non.Retournes)
ivr$Nb.Blocs.Retournes <- as.integer(ivr$Nb.Blocs.Retournes)
ivr$Year <- as.integer(ivr$Year)
ivr$Month <- as.integer(ivr$Month)
ivr$Day <- as.integer(ivr$Day)
ivr$Numero.Quadrat <- as.integer(ivr$Numero.Quadrat)
## save the final, commplete ivr df.
ivr <- ivr[, c(19:54, 1:18)]
## percentage of unturned vs overturned boulders and IVR previous 0-5 discrete scale values calculation
# create two new variables first
site_year_month_day <- paste0(ivr$Site, ".", gsub("-", ".", as.character(ivr$date_fiche)))
ivr <- tibble::add_column(ivr, site_year_month_day, .after = "Site_bis")
rm(site_year_month_day)
site_year_month_day_qdnb <- paste0(ivr$Site, ".", gsub("-", ".", as.character(ivr$Date)), ".", ivr$Numero.Quadrat)
ivr <- tibble::add_column(ivr, site_year_month_day_qdnb, .after = "site_year_month_day")
rm(site_year_month_day_qdnb)
ivr <- dplyr::arrange(ivr, Site, Year, Month, Numero.Quadrat)
# remove data with NA value for Nb.Blocs.Retournes & Nb.Blocs.Non.Retournes
ivr_naomit <- ivr %>% dplyr::filter(!is.na(ivr$Nb.Blocs.Retournes))
ivr_naomit <- as.data.frame(ivr_naomit)
colnames(ivr_naomit) <- colnames(ivr)
ivr_naomit <- ivr_naomit %>% dplyr::filter(!is.na(ivr_naomit$Nb.Blocs.Non.Retournes))
ivr_naomit <- as.data.frame(ivr_naomit)
# also remove data with Nb.Blocs.Retournes = 0 & Nb.Blocs.Non.Retournes = 0, cfr equivalent to quadrat with no boulders ... makes no sense to consider quadrat without boulder for ivr determination.
ivr_rm <- dplyr::filter(ivr_naomit, ivr_naomit$Nb.Blocs.Retournes == 0 && ivr_naomit$Nb.Blocs.Non.Retournes == 0)
ivr_naomit <- ivr_naomit %>% dplyr::anti_join(ivr_rm)
rm(ivr_rm)
ivr_val_qu_ <- ivr_naomit
#############################################################
# #
# Calcul of the IVR #
# #
#############################################################
### Percentage of turned boulder
for (i in 1:nrow(ivr_naomit)) {
(bm <- sum(ivr_naomit$Nb.Blocs.Non.Retournes[i], ivr_naomit$Nb.Blocs.Retournes[i]))
(ivr_val_qu_$blocs.retournes.fr.[i] <- (ivr_naomit$Nb.Blocs.Retournes[i] / bm) * 100)
(ivr_val_qu_$blocs.non.retournes.fr.[i] <- (ivr_naomit$Nb.Blocs.Non.Retournes[i] / bm) * 100)
}
rm(bm, i)
ivr_val_qu_$blocs.non.retournes.fr. <- ifelse(is.nan(ivr_val_qu_$blocs.non.retournes.fr.), NA, ivr_val_qu_$blocs.non.retournes.fr.)
ivr_val_qu_$blocs.retournes.fr. <- ifelse(is.nan(ivr_val_qu_$blocs.retournes.fr.), NA, ivr_val_qu_$blocs.retournes.fr.)
# ivr for loop by quadrat.
for (i in 1:seq_len(nrow(ivr_val_qu_))) {
if (ivr_val_qu_$Nb.Blocs.Non.Retournes[i] == 0 && ivr_val_qu_$Nb.Blocs.Retournes[i] == 0) {
ivr_ <- NA
}else {
if (ivr_val_qu_$blocs.retournes.fr.[i] < 5) {
ivr_ <- 0
} else if (ivr_val_qu_$blocs.retournes.fr.[i] >= 5 && ivr_val_qu_$blocs.retournes.fr.[i] < 25) {
ivr_ <- 1
} else if (ivr_val_qu_$blocs.retournes.fr.[i] >= 25 && ivr_val_qu_$blocs.retournes.fr.[i] < 45) {
ivr_ <- 2
} else if (ivr_val_qu_$blocs.retournes.fr.[i] >= 45 && ivr_val_qu_$blocs.retournes.fr.[i] < 65) {
ivr_ <- 3
} else if (ivr_val_qu_$blocs.retournes.fr.[i] >= 65 && ivr_val_qu_$blocs.retournes.fr.[i] < 85) {
ivr_ <- 4
} else {
ivr_ <- 5
}
ivr_val_qu_$valeur.ivr_quadrat[i] <- ivr_
}
}
rm(i, ivr_)
# reorder variables for logical purpose
ivr_val_qu_ <- ivr_val_qu_[, c(1:56, 58, 57, 59)]
indic_full <- ivr_val_qu_
saveRDS(ivr_val_qu_, "ivr_val_qu.RDS")
rm(ivr_naomit)
## Calculate ivr statistics now
ivr_val_qu_stat_ <- ivr_val_qu_ %>% dplyr::group_by(id.ivr, Site, Site_bis, Year, Month, Day) %>% dplyr::summarize(ivr_moy = mean(valeur.ivr_quadrat), ivr_et = sd(valeur.ivr_quadrat), ivr_med = median(valeur.ivr_quadrat), ivr_min = min(valeur.ivr_quadrat), ivr_max = max(valeur.ivr_quadrat), fr.r.moy = mean(blocs.retournes.fr.), fr.r.et = sd(blocs.retournes.fr.), fr.r.med = median(blocs.retournes.fr.), fr.r.min = min(blocs.retournes.fr.), fr.r.max = max(blocs.retournes.fr.), fr.nr.moy = mean(blocs.non.retournes.fr.), fr.nr.et = sd(blocs.non.retournes.fr.), fr.nr.med = median(blocs.non.retournes.fr.), fr.nr.min = min(blocs.non.retournes.fr.), fr.nr.max = max(blocs.non.retournes.fr.), nb. = dplyr::n())
Date <- as.Date(paste0(ivr_val_qu_stat_$Year, "-", ivr_val_qu_stat_$Month, "-", ivr_val_qu_stat_$Day), origin = "1970-01-01")
ivr_val_qu_stat_ <- tibble::add_column(ivr_val_qu_stat_, Date, .after = "Site_bis")
rm(Date)
ivr_val_qu_stat_ <- as.data.frame(ivr_val_qu_stat_)
indic <- ivr_val_qu_stat_
#############################################################
# #
# Plot the IVR per site #
# #
#############################################################
## plot ivr (NB: Year, Month, Day variable names are replace by Annee, Mois, Jour, cfr previous label use in the script)
ivr_val_qu_stat_ <- dplyr::rename(ivr_val_qu_stat_, Annee = Year)
ivr_val_qu_stat_ <- dplyr::rename(ivr_val_qu_stat_, Mois = Month)
ivr_val_qu_stat_ <- dplyr::rename(ivr_val_qu_stat_, Jour = Day)
# new IVR scale with continuous 0 to 5 environmental status levels based on % of overturned boulders /20, plus other site data
for (i in c(1:length(unique(ivr_val_qu_stat_$Site)))) {
ivr_val_eg <- dplyr::filter(ivr_val_qu_stat_, ivr_val_qu_stat_$Site == unique(ivr_val_qu_stat_$Site)[i])
ivr_plot <- ggplot2::ggplot() +
ggplot2::geom_point(ggplot2::aes(x = ivr_val_qu_stat_$Date, y = ivr_val_qu_stat_$fr.r.moy / 20), col = "grey") +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = - 0.5, ymax = 5 / 20, fill = "#FF0000"), alpha = 0.3) +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = 5 / 20, ymax = 25 / 20, fill = "#F59404"), alpha = 0.3) +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = 25 / 20, ymax = 45 / 20, fill = "#FAFA15"), alpha = 0.3) +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = 45 / 20, ymax = 65 / 20, fill = "#18E125"), alpha = 0.3) +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = 65 / 20, ymax = 85 / 20, fill = "#04F5F5"), alpha = 0.3) +
ggplot2::geom_rect(ggplot2::aes(xmin = min(ivr_val_qu_stat_$Date), xmax = max(ivr_val_qu_stat_$Date), ymin = 85 / 20, ymax = 5.5, fill = "#1A1AE8"), alpha = 0.3) +
ggplot2::scale_fill_manual(values = c("#F59404", "#FAFA15", "#FF0000", "#04F5F5", "#18E125", "#1A1AE8")) +
ggplot2::geom_pointrange(ggplot2::aes(x = ivr_val_eg$Date, y = ivr_val_eg$fr.r.moy / 20, ymin = ivr_val_eg$fr.r.moy / 20 - ivr_val_eg$fr.r.et / 20, ymax = ivr_val_eg$fr.r.moy / 20 + ivr_val_eg$fr.r.et / 20), col = "black") +
ggplot2::xlab("Date") +
ggplot2::ylab("IVR") +
ggplot2::ggtitle(unique(ivr_val_eg$Site_bis)) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), legend.position = "none")
ggplot2::ggsave(paste0("ivr_", unique(ivr_val_eg$Site), ".png"), ivr_plot, height = 3, width = 3.5)
}
report <- args[3]
loop_file <- source(args[4])