-
Notifications
You must be signed in to change notification settings - Fork 0
/
QGAPro_Processor.m
291 lines (282 loc) · 11.5 KB
/
QGAPro_Processor.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
%% Sort out the starting workspace.
clear
clc
close all
fclose('all');
addpath(cd);
%% My generic preferred plotting options.
set(groot, 'defaultFigureWindowStyle', 'Docked','defaultFigureColor', 'White',...
'defaultAxesFontSize', 16, 'defaultAxesFontName', 'Arial',...
'defaultLineLineWidth', 1.3, 'defaultAxesTickDir', 'Out',...
'defaultAxesTickDirMode', 'Manual', 'defaultAxesLineWidth', 2,...
'defaultFigureColormap', gray(64));
%% Import mass spectroscopy file.
% Set up to accept Hiden RGA QGA Pro MS .csv files containing columns of
% data representing each chosen analysis peak.
cal_data = readtable('mass_spec_cal.xlsx'); % Read in calibration file.
libData = readtable('QGAPro_library.txt'); % Read in library file.
libFile = fopen('QGAPro_library.txt'); % Open library file.
libData = textscan(libFile, '%s%s', 'Delimiter', ':');
libData = libData{2};
[libName, libLoc] = uigetfile('*.csv'); % Choose file to analyse.
cd(fLoc);
fData = readmatrix(strcat(fLoc, fName), 'NumHeaderLines', 22);
if sum(isnan(fData(:, end))) > 0 % If final spectrum is incompleted.
fData(end, :) = []; % Delete final spectrum.
end
masses = fData(1, 4 : end); % Get mass axis values.
times = fData(2 : end, 3) ./ (1000 * 60 * 60); % Get time axis values.
fData(:, 1 : 3) = []; % Remove unused data.
fData(1, : ) = []; % Remove unused data.
%% Plot summed spectrum for whole measurement and find masses present.
sumSpec = sum(fData, 1); % Sum data in time for each mass value.
subplot(2, 2, 1);
semilogy(masses, sumSpec); % Show the whole spectrum.
xlabel('Mass [amu]');
ylabel('Intensity [a.u.]');
box off
subplot(2, 2, 2); % Determine noise level.
noisePlot = plot(masses, fData(1,:));
xlabel('Mass [amu]');
ylabel('Intensity [a.u.]');
xlim([12, 20]);
ylim([1E-11, 5E-10]);
box off
inspectPeaks = {'3e-8', '3E-9', '0.1', '0.5', '4E-11'}; % Initial inspection parameters.
% Good levels: 8.3e-11, 1.4E-10
iFind = 1; % Initialise peak inspection index.
warning off
while iFind == 1 % Allow user to adjust peak finding parameters.
hold on
noiseThresh = plot(masses, (0 .* masses) + str2double(inspectPeaks{5}));
peakParams = str2double(inspectPeaks);
subplot(2, 2, 3 : 4); % Identify mass peaks.
hold off
findpeaks(sumSpec, masses, 'MinPeakHeight', peakParams(1),...
'MinPeakProminence', peakParams(2),...
'MinPeakWidth', peakParams(3),...
'MinPeakDistance', peakParams(4)); % Look for peaks.
set(gca, 'YScale', 'Log');
xlabel('Mass [amu]');
ylabel('Intensity [a.u.]');
xlim([0, 45]);
ylim([1E-9, 1E-4]);
box off
acceptPeaks = questdlg('Accept peak finding?', 'Options',...
'Accept', 'Adjust parameters', 'End', 'Adjust parameters');
switch acceptPeaks
case 'Accept'
[mPks, mLocs, mWidths] = findpeaks(sumSpec, masses,...
'MinPeakHeight', peakParams(1),...
'MinPeakProminence', peakParams(2),...
'MinPeakWidth', peakParams(3),...
'MinPeakDistance', peakParams(4)); % Commit peak finding.
iFind = 0; % Reset peak finding index.
case 'Adjust parameters' % Allow user to revise peak finding.
inspectPeaks = inputdlg({'Min peak height:', 'Min peak prominence:',...
'Min peak width;', 'Min peak distance:', 'Noise floor:'},...
'Peak parameters', [1 35], inspectPeaks); % User refinement.
case 'End'
return % End the script.
end
subplot(2, 2, 2);
delete(noiseThresh); % Remove noise threshold marker.
end
%% Use identified peaks to track each species over time.
trackData = zeros(size(fData, 1), numel(mLocs)); % Matrix to store mass data.
clearData = fData; % Create new matrix for data processing.
clearData(clearData < str2double(inspectPeaks{5})) = 0; % Remove noise.
delete(noisePlot); % Remove previous plot.
hold off
for iMass = 1 : numel(mLocs) % Iterate through masses identified.
iShow = 1; % Counter to show some peaks.
[~, mLower] = min(abs(masses - (mLocs(iMass) - mWidths(iMass) - 0.05))); % Trial lower bound.
[~, mUpper] = min(abs(masses - (mLocs(iMass) + mWidths(iMass) - 0.05))); % Trial upper bound.
for iSample = 1 : size(fData, 1) % Iterate through spectra in time.
peakCrop = clearData(iSample, mLower : mUpper); % Crop out mass peak.
clearData(iSample, mLower : mUpper) = 0; % Remove used data.
if rem(iSample, 1) == 0 % Record and plot peaks.
showPeaks{iShow, iMass} = [masses(mLower : mUpper)', peakCrop'];
iShow = iShow + 1; % Increment showing index,
% plot(masses(mLower : mUpper), peakCrop);
% xlabel('Mass [amu]');
% ylabel('Intensity [a.u.]');
% title(strcat(string(iSample), '/', string(size(fData, 1))));
% box off
% pause(0.0001);
end
trackData(iSample, iMass) = sum(peakCrop); % Integrate peak.
end
end
disp('Counted all mass peaks.');
%% Check validity of tracked peak data.
[~, NInd] = min(abs(mLocs - 28)); % Find N2 peak index.
[~, pInd] = max(gradient(trackData(:, NInd))); % Find thermal runaway peak.
figure;
subplot(2, 1, 2);
semilogy([times(pInd), times(pInd)], [1e-9, 3e-9], 'Color', 'k');
hold on
box off
xlabel('Time [hrs]');
ylabel('Counts [a.u.]');
iCheck = 1; % Initialise checking index.
peakColours = jet(size(showPeaks, 1)); % Generate set of colours.
while iCheck > 0
subplot(2, 1, 1);
cla
hold on
for iShow = 1 : size(showPeaks, 1) % Show integrated peaks.
plot(showPeaks{iShow, iCheck}(:,1), showPeaks{iShow, iCheck}(:,2)',...
'-', 'Color', peakColours(iShow, 1 : 3));
end
set(gca, 'YScale', 'log');
xlabel('Mass [amu]');
ylabel('Intensity [a.u.]');
subplot(2, 1, 2);
checkTrackO = semilogy(times, trackData(:, iCheck), 'o');
checkTrackL = semilogy(times, trackData(:, iCheck), '-');
legend(num2str(mLocs(iCheck)), 'Location', 'NorthEast');
legend boxoff
keepPeak = questdlg('Keep tracked peak?', 'Options',...
'Keep', 'Remove', 'End', 'Keep');
switch keepPeak
case 'Keep' % Keep tracked peak in dataset.
iCheck = iCheck + 1; % Increment checking index.
case 'Remove' % Remove tracked peak from dataset.
mLocs(iCheck) = []; % Remove peak mass.
trackData(:, iCheck) = []; % Remove peak data.
showPeaks(:, iCheck) = []; % Remove integrated peak data.
case 'End' % Accept all data from this peak.
disp('All subsequent data accepted.');
iCheck = 0; % End checking.
end
if iCheck > numel(mLocs) % Case that all peaks have been checked.
iCheck = 0; % End checking loop.
end
delete(checkTrackO); % Remove plotted data.
delete(checkTrackL); % Remove plotted data.
end
%% Crop data to period of interest.
[~, NInd] = min(abs(mLocs - 28)); % Find N2 peak index.
figure;
subplot(2, 1, 1); % Plot full spectrum window.
semilogy(times, trackData(:, NInd));
xlabel('Time [hr]');
ylabel('Intensity [a.u.]');
box off
subplot(2, 1, 2); % Plot cropped spectrum window.
hold on
xlabel('Time [hr]');
ylabel('Intensity [a.u.]');
iCrop = 1; % Initialise cropping index.
defineCrop = {'5.8', '8'}; % Initial cropping window.
while iCrop == 1
defineCrop = inputdlg({'Start time [hrs]:', 'End time[hrs]:'}, 'Crop window',...
[1 35], defineCrop); % User refinement.
cropWindow = str2double(defineCrop);
[~, cropLow] = min(abs(times - str2double(defineCrop{1}))); % Lower bound.
[~, cropUp] = min(abs(times - str2double(defineCrop{2}))); % Upper bound.
try
delete(cropPlot);
catch
end
cropPlot = plot(times(cropLow : cropUp), trackData(cropLow : cropUp, NInd));
acceptCrop = questdlg('Accept crop window?', 'Options',...
'Accept', 'Adjust window', 'End', 'Adjust window');
switch acceptCrop
case 'Accept' % Commit cropping.
cropData = trackData(cropLow : cropUp, :); % Crop data.
cropTime = times(cropLow : cropUp); % Crop time.
iCrop = 0; % Reset peak finding index.
case 'End'
return % End the script.
end
end
dataOut = [cropTime, cropData]; % Combine data.
dataOut = [NaN, mLocs; dataOut]; % Add masses.
save(strcat(fName(1 : end - 4), '_window.txt'), 'dataOut', '-ascii');
%% Label masses and determine fractional contributions.
mFound = round(mLocs); % Round found masses to integers.
% Define reference masses (expected or known).
mRefs = [1, 14, 16, 16, 16, 17, 18, 20,...
28, 28, 28, 29, 32, 34, 40, 44];
% Define lables to assign to each mass. Can have multiple per mass.
mLabels = {'H', 'N', 'O_{2}', 'H_{2}O', 'CO', 'H_{2}O', 'H_{2}O', 'Ar'...
'N_{2}', 'CO', 'CO_{2}', 'N_{2}', 'O_{2}', 'O_{2}', 'Ar', 'CO_{2}'};
% Define cracking pattern ratios for each mass assignment.
mCrack = [10, 7.2, 11.4, 1.1, 0.9, 23, 100, 10.7,...
100, 100, 11.4, 0.8, 100, 0.4, 100, 100];
% Define relative sensitivities for each mass assignment.
mSens = [0.44, 1, 0.86, 0.9, 1.05, 0.9, 0.9, 1.2,...
1, 1.05, 1.4, 1, 0.86, 0.86, 1.2, 1.4];
scaleData = trackData; % Matrix for storing scaled/processed data.
%% Carry out a trial background subtraction.
try
try % To extract the argon trace.
[~, ArInd] = min(abs(mFound - 40)); % Find Ar peak index.
ArBack = trackData(:, ArInd);
catch
disp('No argon data found.');
end
try % To extract the nitrogen trace.
[~, NInd] = min(abs(mFound - 28)); % Find N peak index.
NBack = trackData(:, NInd); %
catch
disp('No nitrogen data found.');
end
normComp = (NBack ./ max(NBack)) ./ (ArBack ./ max(ArBack)); % Create comparison data.
% ArFilt = lowpass(ArBack, 0.01); % Filter to get background.
ArFilt = smooth(ArBack, 10, 'rlowess');
ArFilt(1 : 6) = ArFilt(7); % Remove filtering artefact.
ArFilt(end - 5 : end) = ArFilt(end - 6); % Remove filtering artefact.
figure;
subplot(2, 2, 1);
semilogy(times, ArBack ./ max(ArBack));
hold on
semilogy(times, NBack ./ max(NBack));
box off
legend('Argon', 'Nitrogen', 'Location', 'SouthEast');
legend box off
xlabel('Time [hours]');
ylabel('Norm. counts');
subplot(2, 2, 2);
semilogy(times, normComp);
hold on
box off;
xlabel('Time [hours]');
ylabel('Norm. ratio');
subplot(2, 2, 3);
semilogy(times, ArBack);
hold on
semilogy(times, ArFilt);
box off;
xlabel('Time [hours]');
ylabel('Ar counts [a.u.]');
legend('Raw', 'Filtered', 'Location', 'SouthEast');
legend box off
subplot(2, 2, 4);
try % To extract test trace.
[~, testInd] = min(abs(mFound - 10)); % Choose test peak index.
testBack = trackData(:, testInd);
catch
disp('No test data found.');
end
testSub = testBack - (ArFilt .* (testBack(1) / ArFilt(1)));
plot(times, testBack);
hold on
plot(times, testSub);
box off;
xlabel('Time [hours]');
ylabel('Counts [a.u.]');
catch
disp('Normalisation error.');
end
%% Maybe come back to this.
% for iProcess = 1 : numel(mFound) % Iterate through peaks.
% mLabel = find(ismember(mFound(iProcess), mRefs)); % Check reference.
% if numel(mLabel) == 1
% scaleData(:, iProcess) = scaleData(:, iProcess)
% else
% end
% end
% mTot = sum(trackData, 2); % Sum all masses in each spectrum.