-
Notifications
You must be signed in to change notification settings - Fork 0
/
utilities.py
executable file
·149 lines (113 loc) · 5.26 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import SimpleITK as sitk
import matplotlib.pyplot as plt
def hist_match(source, template):
"""
Adjust the pixel values of a grayscale image such that its histogram
matches that of a target image
Arguments:
-----------
source: np.ndarray
Image to transform; the histogram is computed over the flattened
array
template: np.ndarray
Template image; can have different dimensions to source
Returns:
-----------
matched: np.ndarray
The transformed output image
"""
oldshape = source.shape
source = source.ravel()
template = template.ravel()
# get the set of unique pixel values and their corresponding indices and
# counts
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
# take the cumsum of the counts and normalize by the number of pixels to
# get the empirical cumulative distribution functions for the source and
# template images (maps pixel value --> quantile)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles /= s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles /= t_quantiles[-1]
# interpolate linearly to find the pixel values in the template image
# that correspond most closely to the quantiles in the source image
#interp_t_values = np.zeros_like(source,dtype=float)
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
return interp_t_values[bin_idx].reshape(oldshape)
def sitk_show(nda, title=None, margin=0.0, dpi=40):
figsize = (1 + margin) * nda.shape[0] / dpi, (1 + margin) * nda.shape[1] / dpi
extent = (0, nda.shape[1], nda.shape[0], 0)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = fig.add_axes([margin, margin, 1 - 2*margin, 1 - 2*margin])
plt.set_cmap("gray")
for k in range(0,nda.shape[2]):
print "printing slice "+str(k)
ax.imshow(np.squeeze(nda[:,:,k]),extent=extent,interpolation=None)
plt.draw()
plt.pause(0.1)
#plt.waitforbuttonpress()
def computeQualityMeasures(lP,lT):
quality=dict()
labelPred=sitk.GetImageFromArray(lP, isVector=False)
labelTrue=sitk.GetImageFromArray(lT, isVector=False)
hausdorffcomputer=sitk.HausdorffDistanceImageFilter()
hausdorffcomputer.Execute(labelTrue>0.5,labelPred>0.5)
quality["avgHausdorff"]=hausdorffcomputer.GetAverageHausdorffDistance()
quality["Hausdorff"]=hausdorffcomputer.GetHausdorffDistance()
dicecomputer=sitk.LabelOverlapMeasuresImageFilter()
dicecomputer.Execute(labelTrue>0.5,labelPred>0.5)
quality["dice"]=dicecomputer.GetDiceCoefficient()
return quality
def produceRandomlyDeformedImage(image, label, dmap, numcontrolpoints, stdDef, Dmap_bool):
sitkImage=sitk.GetImageFromArray(image, isVector=False)
sitklabel=sitk.GetImageFromArray(label, isVector=False)
if Dmap_bool:
sitkDmap=sitk.GetImageFromArray(dmap, isVector=False)
transfromDomainMeshSize=[numcontrolpoints]*sitkImage.GetDimension()
tx = sitk.BSplineTransformInitializer(sitkImage,transfromDomainMeshSize)
params = tx.GetParameters()
paramsNp=np.asarray(params,dtype=float)
paramsNp = paramsNp + np.random.randn(paramsNp.shape[0])*stdDef
paramsNp[0:int(len(params)/3)]=0 #remove z deformations! The resolution in z is too bad
params=tuple(paramsNp)
tx.SetParameters(params)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitkImage)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(0)
resampler.SetTransform(tx)
outimgsitk = resampler.Execute(sitkImage)
outlabsitk = resampler.Execute(sitklabel)
if Dmap_bool:
resampler.SetDefaultPixelValue(np.mean(np.asarray(label,dtype=float)))
outdmapsitk = resampler.Execute(sitkDmap)
outimg = sitk.GetArrayFromImage(outimgsitk)
outimg = outimg.astype(dtype=np.float32)
outlbl = sitk.GetArrayFromImage(outlabsitk)
outlbl = (outlbl).astype(dtype=np.float32) #>0.5
if Dmap_bool:
outdmap = sitk.GetArrayFromImage(outdmapsitk)
outdmap = (outdmap).astype(dtype=np.float32)
else: outdmap=None
return outimg,outlbl,outdmap
def produceRandomlyTranslatedImage(image, label):
sitkImage = sitk.GetImageFromArray(image, isVector=False)
sitklabel = sitk.GetImageFromArray(label, isVector=False)
itemindex = np.where(label > 0)
randTrans = (0,np.random.randint(-np.min(itemindex[1])/2,(image.shape[1]-np.max(itemindex[1]))/2),np.random.randint(-np.min(itemindex[0])/2,(image.shape[0]-np.max(itemindex[0]))/2))
translation = sitk.TranslationTransform(3, randTrans)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitkImage)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(0)
resampler.SetTransform(translation)
outimgsitk = resampler.Execute(sitkImage)
outlabsitk = resampler.Execute(sitklabel)
outimg = sitk.GetArrayFromImage(outimgsitk)
outimg = outimg.astype(dtype=float)
outlbl = sitk.GetArrayFromImage(outlabsitk) > 0
outlbl = outlbl.astype(dtype=float)
return outimg, outlbl