-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path000_ConvenienceFunctions.R
590 lines (530 loc) · 20.3 KB
/
000_ConvenienceFunctions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Broad functions that most script depend on
myLog <- function(...) {
cat(paste0("[Processing] ", Sys.time(), " | ", ..., "\n"))
}
`%notin%` = function(a, b){!(a %in% b)}
normalize <- function(x)
{
if (length(x) == 1)
return(1)
y <- suppressWarnings((x - min(x, na.rm = TRUE))/(max(x,
na.rm = TRUE) - min(x, na.rm = TRUE)))
if (any(is.nan(y)))
return(x)
else return(y)
}
#' Show difference between two vectors
#'
#' returns a list of the elements of x that are not in y
#' and the elements of y that are not in x (not the same thing...)
#' @param x vector x
#' @param y vector y
#' @keywords difference
#' @export
#' @usage setdiff2(x,y)
#' @author Martin Jung
setdiff2 <- function(x,y) {
Xdiff = setdiff(x,y)
Ydiff = setdiff(y,x)
list(X_not_in_Y=Xdiff, Y_not_in_X=Ydiff)
}
#### Loading outputs ####
# Load in function
makeStack <- function(files, pol = NULL){
if(is.null(pol)){
return( raster::stack(files) )
} else {
assertthat::assert_that("sf" %in% class(pol) )
# Run in parallel
cl <- registerDoParallel(cores = 7)
res <- foreach(f = iter(files),.inorder = TRUE,.final = stack) %dopar% {
vx <- velox(f)
vx$crop(pol)
return( vx$as.RasterLayer() )
}
n <- str_split(basename(files),"_",3,simplify = T)
names(res) <- paste(n[,2],str_split(n[,3],"\\.",simplify = T)[,1],sep = "_")
# Return the result
return(res)
}
}
#### Saving outputs ####
# Save output
writeGeoTiff <- function(file, fname,dt = "INT2S"){
require(assertthat)
if(!has_extension(fname,"tif")) fname <- paste0(fname,".tif")
writeRaster(file,fname,
format='GTiff',
datatype = dt,
NAflag = -9999,
options=c("COMPRESS=DEFLATE","PREDICTOR=2","ZLEVEL=9"),
overwrite= TRUE )
}
#### Spatial unit conversions ####
latlong2UTMzone <- function(lon,lat){
# Normal calculation
ZoneNumber = floor((lon + 180)/6) + 1
# Special case for higher longitude levels
if( lat >= 56.0 && lat < 64.0 && lon >= 3.0 && lon < 12.0 ){
ZoneNumber = 32
}
# Special cases for svalbard
if( lat >= 72.0 && lat < 84.0 ) {
if ( lon >= 0.0 && lon < 9.0 ) ZoneNumber = 31
else if( lon >= 9.0 && lon < 21.0 ) ZoneNumber = 33
else if( lon >= 21.0 && lon < 33.0 ) ZoneNumber = 35
else if( lon >= 33.0 && lon < 42.0 ) ZoneNumber = 37
}
#Return the result
return(ZoneNumber)
}
DegreeCellAreaKM <- function(lat, height, width) {
# Returns the area in km squared of a grid cell in degrees of arc
# lat - the latitudinal centre of the cell
# height, width - the size of the grid cell in degrees
# TODO Unit test
# TODO Reference for this method
radians <- function(theta) theta*pi/180.0
# Convert the latitude into radians
lat.rad <- radians(lat)
# The equatorial and polar radii of the Earth in km
eq.radius <- 6378137
pol.radius <- 6356752.3142
# Calculate cell area
angular.eccentricity <- acos(radians(pol.radius/eq.radius))
ecc.sq <- sin(radians(angular.eccentricity))^2
flattening <- 1-cos(radians(angular.eccentricity))
temp.val <- (eq.radius*cos(lat.rad))^2+(pol.radius*sin(lat.rad))^2
m.phi <- ((eq.radius*pol.radius)^2)/(temp.val^1.5)
n.phi <- (eq.radius^2)/sqrt(temp.val)
lat.length <- pi/180*m.phi/1000
long.length <- pi/180*cos(lat.rad)*n.phi/1000
return (lat.length*height*long.length*width)
}
#### Template creation ####
# Empty raster function
emptyraster <- function(x, ...) { # add name, filename,
emptyraster <- raster(nrows=nrow(x), ncols=ncol(x),
crs=x@crs,
ext=extent(x), ...)
return(emptyraster)
}
#' Unify extent of a rasterstack
#'
#' @author Martin Jung
#' @param rList a list of raster objects
#' @return returns the unified total extent
#' @export
#'
max_extent <- function(rlist){
# given list of rasters
# returns union of extent
xmin=min(sapply(rl,FUN=function(x){extent(x)@xmin}))
xmax=max(sapply(rl,FUN=function(x){extent(x)@xmax}))
ymin=min(sapply(rl,FUN=function(x){extent(x)@ymin}))
ymax=max(sapply(rl,FUN=function(x){extent(x)@ymax}))
extent(c(xmin,xmax,ymin,ymax))
}
#### Raster Modifications ####
# Define a function for minmax-normalization
normalize_raster <- function(x) {
min <- raster::minValue(x)
max <- raster::maxValue(x)
return((x - min) / (max - min))
}
#' Allign raster data by bringing it in the same geometry and extend.
#'
#' If the data is not in the same projection as the template, the allignment
#' will be computed by reprojection only. If the data has already the same
#' projection, the data set will be croped and aggregated prior to resampling
#' in order to reduce computation time.
#'
#' @author Martin Jung
#' @author Thomas Nauss
#' @import raster
#' @param data raster layer to be resampled
#' @param template raster or spatial data set from which geometry can be extracted
#' @param method method for resampling ("ngb" or "bilinear")
#' @param func Function to apply for aggregation
#' @param cl Should cluster computation be used (Default=T)
#' @param expand Expanding the output variable
#'
#' @return raster layer containing geometrically alligned data
#' @export
alignRasters <- function(data, template, method = "bilinear",func = mean,cl = T,expand = TRUE){
lib <- c("raster")
sapply(lib, function(...) stopifnot(require(..., character.only = T)))
if(cl) beginCluster(parallel::detectCores()-1)
if(projection(data) == projection(template)){
data <- raster::crop(data, template, snap = "near")
if(class(template) == "RasterLayer"){
if(data@ncols / template@ncols >= 2){
factor <- floor(data@ncols/template@ncols)
data <- raster::aggregate(data, fact = factor, fun = func,na.rm = TRUE,
expand=expand)
}
data <- raster::resample(data, template, method = method)
}
} else {
data <- projectRaster(data,crs = template, method = method)
}
if(cl) endCluster()
return(data)
}
split_raster <- function(infile,outpath,parts=3) {
## parts = division applied to each side of raster, i.e. parts = 2 gives 4 tiles, 3 gives 9, etc.
lib <- c("gdalUtils","parallel","reshape2")
sapply(lib, function(...) stopifnot(require(..., character.only = T)))
# Check if infile exists
stopifnot(file.exists(infile))
filename <- strsplit(basename(infile),".tif")[[1]]
# Get the dimensions of the file
dims <- as.numeric(
strsplit(gsub('Size is|\\s+', '', grep('Size is', gdalinfo(infile), value=TRUE)),
',')[[1]]
)
# Generate window frames
xy <- list()
# t is nr. of iterations per side
t <- parts - 1
for (i in 0:t) {
for (j in 0:t) {
# [-srcwin xoff yoff xsize ysize] src_dataset dst_dataset
srcwin <- paste(i * dims[1]/parts, j * dims[2]/parts, dims[1]/parts, dims[2]/parts)
xy[[paste0(i,"_",j)]] <- data.frame(infile = infile,srcwin = srcwin, file = paste0(outpath,"/",filename,"_",i,"_",j,".tif"))
}
}
df <- melt(xy)
# Then process per src_win
cat("Start splitting: ",filename)
# Create a function to split the raster using gdalUtils::gdal_translate
split <- function(input, outfile, srcwin) {
gdal_translate(input, outfile, srcwin=srcwin)
}
# Make a copy for export
df_org <- df
# Kick out files already existing
df <- df[which(!file.exists(as.character(df$file))),]
# Make cluster
cl <- makeCluster(detectCores()-1)
clusterExport(cl, c('split', 'df'))
clusterEvalQ(cl,library(gdalUtils))
system.time({
parLapply(cl, seq_len(nrow(df)), function(i) {
split(df$infile[i], df$file[i], df$srcwin[i])
})
})
stopCluster(cl)
cat("\n")
cat("Done")
return(df_org)
}
#' Expand an extent by a certain number
#'
#' @author Martin Jung
#' @param e an extent object
#' @param f value to increase the extent (Default = 0.1)
#' @return returns the unified total extent
#' @export
extent_expand <- function(e,f=0.1){
xi <- (e@xmax-e@xmin)*(f/2)
yi <- (e@ymax-e@ymin)*(f/2)
xmin <- e@xmin-xi
xmax <- e@xmax+xi
ymin <- e@ymin-yi
ymax <- e@ymax+yi
return(extent(c(xmin,xmax,ymin,ymax)))
}
# Transform to mollweide function
projectMollWeide <- function(image, output = "test.tif",s.crs = "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs"){
out <- gdalwarp(srcfile = image@file@name,
dstfile = output,
s_srs = proj4string(image),
t_srs = s.crs,
r = "near",
co = c("COMPRESS=DEFLATE","PREDICTOR=2","ZLEVEL=9"),
output_Raster=TRUE, multi = TRUE,
overwrite=TRUE,verbose=TRUE)
return( out )
}
#### Priority map aggregations ####
#' Aggregate a given raster by rank
#' @param ras Calculate the shortfall for each species
#' @param globalgrid A global raster layer depicting the cell area
#' @param method Whether normal binning or binning by secondary layer is to be conducted
#' @param ties.method Default:random
#' @param n The number of breaks
#' @param plot If true, plot the proportions of each cell
#' @import assertthat
#' @import raster
#' @export
#' @author Martin Jung
# New ranked aggregation
raster_to_ranks <- function(ras, globalgrid = NULL, method = 'area', ties.method = 'random', n = 101,plot = TRUE){
assert_that(
cellStats(ras,'max')>0
)
if(method == 'area'){
# Make a copy of an empty raster
mcp_copy <- emptyraster(ras)
# Convert to data.frame
df <- as.data.frame(stack(ras, globalgrid))
names(df) <- c('layer','area')
df <- tibble::rowid_to_column(df,'cellid')
# Then rank and sort by highest value
df$layer[!is.na(df[,'layer'])] <- rank(df[!is.na(df[,'layer']),'layer'],ties.method = ties.method)
df <- df[order(df$layer,na.last = TRUE,decreasing = TRUE),]
df <- tidyr::drop_na(df,layer)
# Now add a column with the cumulative sum of area
df$cumsum <- cumsum(df$area)
df$newcut <- cut(df$cumsum, seq(0, cellStats(globalgrid,sum),length.out = n))
mcp_copy[df$cellid] <- df$newcut
if(plot){
x = cut(mcp_copy[],seq(0,100,10),include.lowest=F)
#x = cut_number(mcp_ilp_hier[],n = 10)
barplot(table(x),main = 'Binned by 10%',ylab = 'Number of grid cells',xlab = 'Bins')
plot(mcp_copy,col = scico::scico(10,palette = 'roma'))
}
return(mcp_copy)
} else {
# Make a copy of an empty raster
mcp_copy <- emptyraster(ras)
# Convert to data.frame
df <- as.data.frame(ras)
# Assign ranks to all values
df$neworder[!is.na(df[,1])] <- rank(df[!is.na(df[,1]),1],ties.method = ties.method)
df$newcut <- ggplot2::cut_interval(df$neworder, n = n)
mcp_copy[] <- df$newcut
# Subtract 1 from the number of bins to that ranges goes from 0 to 100
mcp_copy <- mcp_copy - 1
if(plot){
x = cut(mcp_copy[],seq(0,100,10),include.lowest=F)
#x = cut_number(mcp_ilp_hier[],n = 10)
barplot(table(x),main = 'Binned by 10%',ylab = 'Number of grid cells',xlab = 'Bins')
plot(abs(mcp_copy - 100),col = scico::scico(10,palette = 'roma'))
}
return(mcp_copy)
}
}
#### PrioritizeR helper functions ####
# Calculate species-specific relative targets
# Suggest by Mogg et al.
# Resolution being a number in kilometer units
calc_targets <- function(rij_data,resolution) {
# Resolution is in km!
rij_data %>%
dplyr::group_by(species) %>% # Per species
dplyr::summarise(
size = (n_distinct(pu) * (resolution^2)), # Approximate grid cells area occupied in sqkm
absolute_target = min( c( max( c(2200 ), 0.8 * ((n_distinct(pu) * (resolution^2)) ) ), 10^6 ) )
) %>%
# Add relative target as well
dplyr::mutate( relative_target = absolute_target / size ) %>%
ungroup()
}
# Alternative implementation using the directly measured area
calc_targets2 <- function(rij_data, multiplier = 1) {
assert_that(has_name(rij_data,'area'),has_name(rij_data,'species'))
if(multiplier == 1) { warning('Normal multiplier used. Correct?')}
# Resolution is in km!
rij_data %>%
mutate(amount = amount * area) %>%
dplyr::group_by(species) %>% # Per species
dplyr::summarise(
size = sum(amount), # Approximate grid cells area occupied in sqkm
absolute_target = min( c( max( c(2200 * multiplier ), 0.8 * size ) ), 10^6 * multiplier )
) %>%
ungroup() %>%
# Add relative target as well
dplyr::mutate( relative_target = ifelse( (absolute_target / size)>=1 ,1,(absolute_target / size) ) ) %>%
ungroup()
}
# Create a output raster
createOutput <- function(pu_id_raster, r, scol = 'solution_1' ){
require(assertthat)
assert_that(has_name(r,scol))
# Solved object columns: (id, cost, solution_1)
# Create output raster
temp <- as.data.frame(pu_id_raster)
# Replace
temp$solution <- NA
temp$solution[ which(temp[,1] %in% r[which(r[,scol] > 0),1] ) ] <- r[which(r[,scol] > 0),scol]
assert_that(!all(is.na(temp$solution)),msg = 'No solution in output raster')
# Create output template and replace
solution_raster_data <- emptyraster(pu_id_raster)
solution_raster_data[] <- temp$solution
return(solution_raster_data)
}
# Alternative to the feature_representation script
# Necessary as the prioritizeR version creates a M x N matrix
# that is too big for memory (requires ~480GB) for Matrix multiplication
# #id / cost / protected / solution_1
feature_representation2 <- function(x, solution, cores = 1) {
if(cores>1){ require(doParallel)}
require(Matrix);require(progress)
# Check if any solutions are below 0 (???)
# TODO: Check with Jeff what this is about? Probably optimization errors/ infesability?
if(min(unlist(solution), na.rm = TRUE) < 0){
solution[which(unlist(solution) < 0),] <- 0 # Remove from the solution pool
}
# assert valid arguments
assertthat::assert_that(
is.data.frame(solution),
number_of_zones(x) == ncol(solution),
number_of_total_units(x) == nrow(solution),
is.data.frame(x$data$cost),
is.numeric(unlist(solution)),
min(unlist(solution), na.rm = TRUE) >= 0
# max(solution, na.rm = TRUE) <= 1 # This was causing the calc to fail?
)
# subset planning units with finite cost values
pos <- x$planning_unit_indices()
solution <- as.matrix(solution)
if (any(solution[setdiff(seq_len(nrow(solution)), pos), ,
drop = FALSE] > 0))
stop("planning units with NA cost data have non-zero allocations in the ",
"argument to solution")
solution <- solution[pos, , drop = FALSE]
# calculate amount of each feature in each planning unit
total <- x$feature_abundances_in_total_units()
if(cores > 1){ registerDoParallel(cores) }
i=1 #FIXME: Currently only single zone being supported
# # Calculate blocks
ll <- seq(1,nrow(x$data$rij_matrix[[i]]) )
chunk <- function(x,n) split(x, cut(seq_along(x), n, labels = FALSE)) # Chunking script
blocks <- chunk(ll, round(length(ll)/ 500) )
if(cores > 1) {
held <- foreach(bl = iter(blocks),
.export = c('x','i','solution'),
.packages = c('Matrix'),
.inorder = TRUE) %dopar% {
return(
rowSums( x$data$rij_matrix[[i]][bl,] * Matrix::Matrix(data = solution[, i],
nrow = nrow(x$data$rij_matrix[[i]][bl,]), ncol = nrow(solution),
byrow = TRUE, sparse = TRUE
)
)
)
}
# Combine the results
held <- do.call(c,held)
stopImplicitCluster()
} else {
held <- vector()
pb <- progress_bar$new(total = length(blocks))
for(bl in blocks){
held <- c(held,
rowSums( x$data$rij_matrix[[i]][bl,] * Matrix::Matrix(data = solution[, i],
nrow = nrow(x$data$rij_matrix[[i]][bl,]), ncol = nrow(solution),
byrow = TRUE, sparse = TRUE
)
)
)
pb$tick()
gc()
}
pb$terminate()
}
stopifnot(
assertthat::assert_that( length(total) == length(held) )
)
out <- tibble::tibble(feature = rep(x$feature_names(), x$number_of_zones()),
absolute_held = c(held),
relative_held = c(held / total))
if (x$number_of_zones() > 1) {
out$zone <- rep(x$zone_names(), each = x$number_of_features())
out <- out[, c(1, 4, 2, 3), drop = FALSE]
}
out
}
## Representation by PU script #
# Script to calculate mean relative representation by PU-ID
# Output is meant to create a map showing the irreplaceability of each pu
feature_pu_representation <- function(x,solution,out,pu_id_raster){
require(doParallel);require(Matrix);require(progress)
# assert valid arguments
assertthat::assert_that(
is.data.frame(solution),
number_of_zones(x) == ncol(solution),
number_of_total_units(x) == nrow(solution),
is.data.frame(x$data$cost),
is.numeric(unlist(solution)),
min(unlist(solution), na.rm = TRUE) >= 0,
max(unlist(solution), na.rm = TRUE) <= 1,
"absolute_held" %in% names(out)
)
# subset planning units with finite cost values
pos <- x$planning_unit_indices()
solution <- as.matrix(solution)
if (any(solution[setdiff(seq_len(nrow(solution)), pos), ,
drop = FALSE] > 0))
stop("planning units with NA cost data have non-zero allocations in the ",
"argument to solution")
solution <- solution[pos, , drop = FALSE]
# Assign NA data to non-represented features
out[which(out[,'absolute_held']==0),'absolute_held'] <- NA
i=1
ll <- seq(1,nrow(solution) )
chunk <- function(x,n) split(x, cut(seq_along(x), n, labels = FALSE)) # Chunking script
blocks <- chunk(ll, round(length(ll)/ 500) )
held <- vector()
pb <- progress_bar$new(total = length(blocks))
for(bl in blocks){
# Multiply by total feature abundance divisor
held <- c( held,
colSums((x$data$rij_matrix[[i]][,bl] * (1/out[,'absolute_held'])) * Matrix::Matrix(data = solution[bl, i],
nrow = nrow(x$data$rij_matrix[[i]]), ncol = length(solution[bl,]),
byrow = TRUE, sparse = TRUE
),na.rm = TRUE)
)
pb$tick()
}
pb$terminate()
# Securitz checks
stopifnot(
assertthat::assert_that(
nrow(solution) == length(held)
)
)
# Create output raster
temp <- as.data.frame(pu_id_raster)
# Replace
temp$solution <- NA
temp[match(pos,temp[,1]),"solution"] <- held
temp$solution[which(temp$solution==0)] <- NA # Sum of Zero is not relevant
assert_that(!all(is.na(temp$solution)),msg = 'No solution in output raster')
# Create output template and replace
solution_raster_data <- emptyraster(pu_id_raster)
solution_raster_data[] <- temp$solution
solution_raster_data <- normalize_raster(solution_raster_data) # Normalize
names(solution_raster_data) <- "complementarity"
#writeGeoTiff(solution_raster_data, paste0(results_path,'/','maxfeat_speciestargets_complementarity_',target_resolution,'_',round(b,2)*100,'perc.tif'),'FLT4S')
return(solution_raster_data)
}
#' Calculate shortfall for a given representation file
#' Possible either by species or overall
#' @param repr_file Calculate the shortfall for each species
#' @param by_species Calculate shortfall per species or how many targets have been reached
#' @export
#' @author Martin Jung
calc_shortfall <- function(repr_file, by_species = TRUE){
require(assertthat):require(tidyverse)
assert_that(
is.data.frame(repr_file),is.logical(by_species),
has_name(repr_file, "absolute_held"),has_name(repr_file, "absolute_target")
)
if(by_species){
# Calculate the shortfall for each feature
rr <- repr_file %>% mutate(
shortfall = (pmax(absolute_target - absolute_held, 0))/ absolute_target,
target_reached = absolute_held >= absolute_target
) %>%
dplyr::select(feature,shortfall,target_reached)
} else {
# Simply calculate overall how many targets have been reached
rr <- repr_file %>%
dplyr::summarise(target_reached = length(which( absolute_held >= absolute_target )) / n() ) %>%
dplyr::mutate(feature = 'OVERALL') %>% dplyr::select(feature, target_reached)
}
return(rr)
}