-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path002_PrepCarbonData.R
176 lines (155 loc) · 7.92 KB
/
002_PrepCarbonData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# ------------------------------------------------------- #
# Prepare carbon data for subsequent analyses
library(raster)
library(fasterize)
library(gdalUtils)
library(rgdal)
library(velox)
library(sf)
library(stringr)
library(assertthat)
library(doParallel)
library(data.table)
library(tidyverse)
source("src/000_ConvenienceFunctions.R")
rasterOptions(progress = 'text')
data_path <- "data/"
# The path to the most up-to-date carbon data
carbon_path = "/media/martin/data/raw/Carbon/"
carbon_path_geobene = "/mnt/pdrive/geobene2/Spatial_data/global/NatureMap/Biomass"
target_resolution = "10km"; target_resolution_number <- 10
projection = "mollweide"
#output_path = "/media/martin/data/features/carbon_agbc"
output_path = "/media/martin/data/features_esh/carbon_agbc"
if(!dir.exists(output_path)) dir.create(output_path)
# Load template raster
# --------------------------------- #
#### SOC Data ####
# Carbon (merge beforehand in QGIS)
# Align with 1km global grid
globalgrid <- raster( paste0(data_path,"globalgrid_","wgs84","_","10km",".tif") )
ras <- raster("/media/martin/data/raw/Carbon/SOC_10km_v11.tif")
ras <- raster::flip(ras,direction = 'y')
ras <- alignRasters(ras, globalgrid, method = 'bilinear',func = raster::mean,cl = TRUE)
# Mask out using the terrestrial layer
m = globalgrid
m[m > 0] <- 1
ras <- raster::mask(ras, m)
ras <- raster::clamp(ras, lower = 0, upper = Inf)
writeGeoTiff(ras, "/media/martin/data/raw/Carbon/SOC_10km.tif", dt = 'FLT4S')
# Reproject
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","10km",".tif") )
fname <- paste0(carbon_path,"SOC_10km.tif")
fname_moll = paste0(output_path,"/Carbon_SOC_","10km","_",projection,".tif") # Output name
gdalwarp(srcfile = fname,dstfile = fname_moll,
r = "bilinear",
s_srs = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0",
t_srs = "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs",
tr = raster::res(globalgrid),
dstnodata = -9999,
multi = TRUE,co=c("NUM_THREADS=ALL_CPUS","COMPRESS=DEFLATE","PREDICTOR=2","ZLEVEL=9")
)
# Align grid
carb <- raster(fname_moll)
carb <- alignRasters(carb, globalgrid, method = "bilinear",func = mean, cl = FALSE)
writeGeoTiff(carb, fname_moll,"FLT4S") # Save outputs and clear
rm(globalgrid,carb)
# -------- Aggregate to 50km --------- #
carb <- raster(fname_moll) # Security copy
carb <- setMinMax(carb)
carb[is.na(carb)] <- 0
#carb10km <- raster::aggregate(carb, fact = 10,na.rm = TRUE, fun = mean)
#fname_moll = paste0(output_path,"/Carbon_SOC_","10km","_",projection,".tif") # Output name
#writeGeoTiff(carb10km, fname_moll,"FLT4S") # Save outputs and clear
carb50km <- raster::aggregate(carb, fact = 5,na.rm = TRUE, fun = mean)
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","50km",".tif") )
carb50km <- alignRasters(carb50km, globalgrid, method = "bilinear",func = mean, cl = FALSE)
carb50km[carb50km==0] <- NA
fname_moll = paste0(output_path,"/Carbon_SOC_","50km","_",projection,".tif") # Output name
writeGeoTiff(carb50km, fname_moll, "FLT4S") # Save outputs and clear
#### AGBC Data ####
# Below ground carbon
# Making a global ABGC layer in T/ha
ras_abgc <- raster(paste0(carbon_path_geobene,"/","AGBC_fmc.tif")) # Above and below ground biomass carbon
globalgrid <- raster( paste0(data_path,"globalgrid_","wgs84","_","1km",".tif") )
# Output name
fname = paste0(output_path,"/Carbon_AGBC_","1km","_","wgs84",".tif") # Output name
assert_that(!file.exists(fname))
gdalwarp(srcfile = paste0(carbon_path_geobene,"/","AGBC_fmc_1.tif"),dstfile = fname,
r = "bilinear",
tr = raster::res(globalgrid),
multi = TRUE,
co=c("NUM_THREADS=ALL_CPUS","COMPRESS=DEFLATE","PREDICTOR=2","ZLEVEL=9")
)
# Now load the 1km version and aggregate to 10km
ras_abgc1km <- raster(fname)
#ras_abgc1km[ras_abgc1km==0] <- NA
ras_abgc10km <- raster::aggregate(ras_abgc1km, fact = 10,na.rm = TRUE, fun = mean)
ras_abgc50km <- raster::aggregate(ras_abgc1km, fact = 50,na.rm = TRUE, fun = mean)
fname = paste0(output_path,"/Carbon_AGBC_","10km","_","wgs84",".tif") # Output name
writeGeoTiff(ras_abgc10km, fname, dt = 'FLT4S')
fname = paste0(output_path,"/Carbon_AGBC_","50km","_","wgs84",".tif") # Output name
writeGeoTiff(ras_abgc50km, fname, dt = 'FLT4S')
# Reproject to Mollweide and repeat aggregation
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","1km",".tif") )
(fname_moll = paste0(output_path,"/Carbon_AGBC_","1km","_",projection,".tif")) # Output name
ras <- raster(paste0(output_path,"/Carbon_AGBC_","1km","_","wgs84",".tif"))
carb <- projectRaster(ras, crs = "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs")
carb <- alignRasters(carb, globalgrid, method = "bilinear",func = mean)
carb <- raster::mask(carb,globalgrid)
writeGeoTiff(carb, fname_moll, dt = 'FLT4S')
# -------- Aggregate --------- #
#carb[carb==0] <- NA # Unnecessary, already 0
carb10km <- raster::aggregate(carb, fact = 10,na.rm = TRUE, fun = mean)
# Align with globalgrid
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","10km",".tif") )
carb10km <- alignRasters(carb10km, globalgrid, method = 'bilinear',func = mean,cl = T)
fname_moll = paste0(output_path,"/Carbon_AGBC_","10km","_",projection,".tif") # Output name
carb10km[carb10km==0] <- NA
writeGeoTiff(carb10km, fname_moll,"FLT4S") # Save outputs and clear
carb50km <- raster::aggregate(carb, fact = 50,na.rm = TRUE, fun = mean)
# Align with globalgrid
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","50km",".tif") )
carb50km <- alignRasters(carb50km,globalgrid,method = 'bilinear',func = mean,cl = T)
carb50km[carb50km==0] <- NA
fname_moll = paste0(output_path,"/Carbon_AGBC_","50km","_",projection,".tif") # Output name
writeGeoTiff(carb50km, fname_moll,"FLT4S") # Save outputs and clear
# ---------------------------- #
#### BGBC Data ####
# Below ground carbon
# Making a global ABGC layer in T/ha
ras_abgc <- raster(paste0(carbon_path_geobene,"/","BGBC.tif")) # Above and below ground biomass carbon
globalgrid <- raster( paste0(data_path,"globalgrid_","wgs84","_","1km",".tif") )
# Output name
fname = paste0(output_path,"/Carbon_BGBC_","1km","_","wgs84",".tif") # Output name
assert_that(!file.exists(fname))
gdalwarp(srcfile = paste0(carbon_path_geobene,"/","BGBC.tif"),dstfile = fname,
r = "bilinear",
tr = raster::res(globalgrid),
multi = TRUE,
co=c("NUM_THREADS=ALL_CPUS","COMPRESS=DEFLATE","PREDICTOR=2","ZLEVEL=9")
)
# Reproject to Mollweide and repeat aggregation
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","1km",".tif") )
(fname_moll = paste0(output_path,"/Carbon_BGBC_","1km","_",projection,".tif")) # Output name
ras <- raster(paste0(output_path,"/Carbon_BGBC_","1km","_","wgs84",".tif"))
carb <- projectRaster(ras, crs = "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +units=m +no_defs")
carb <- alignRasters(carb, globalgrid, method = "bilinear",func = mean)
carb <- raster::mask(carb,globalgrid)
writeGeoTiff(carb, fname_moll, dt = 'FLT4S')
# -------- Aggregate --------- #
#carb[carb==0] <- NA # Unnecessary, already 0
carb10km <- raster::aggregate(carb, fact = 10,na.rm = TRUE, fun = mean)
# Align with globalgrid
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","10km",".tif") )
carb10km <- alignRasters(carb10km, globalgrid, method = 'bilinear',func = mean,cl = T)
fname_moll = paste0(output_path,"/Carbon_BGBC_","10km","_",projection,".tif") # Output name
carb10km[carb10km==0] <- NA
writeGeoTiff(carb10km, fname_moll,"FLT4S") # Save outputs and clear
carb50km <- raster::aggregate(carb, fact = 50,na.rm = TRUE, fun = mean)
# Align with globalgrid
globalgrid <- raster( paste0(data_path,"globalgrid_",projection,"_","50km",".tif") )
carb50km <- alignRasters(carb50km,globalgrid,method = 'bilinear',func = mean,cl = T)
carb50km[carb50km==0] <- NA
fname_moll = paste0(output_path,"/Carbon_BGBC_","50km","_",projection,".tif") # Output name
writeGeoTiff(carb50km, fname_moll,"FLT4S") # Save outputs and clear