-
Notifications
You must be signed in to change notification settings - Fork 0
/
KNN.py
39 lines (30 loc) · 1.2 KB
/
KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import sklearn
from sklearn.utils import shuffle
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import numpy as np
from sklearn import linear_model, preprocessing
data = pd.read_csv("car.data")
print(data.head())
le = preprocessing.LabelEncoder()
buying = le.fit_transform(list(data["buying"]))
maint = le.fit_transform(list(data["maint"]))
door = le.fit_transform(list(data["door"]))
persons = le.fit_transform(list(data["persons"]))
lug_boot = le.fit_transform(list(data["lug_boot"]))
safety = le.fit_transform(list(data["safety"]))
cls = le.fit_transform(list(data["class"]))
predict = "class"
x = list(zip(buying, maint, door, persons, lug_boot, safety))
y = list(cls)
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.1)
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
acc = model.score(x_test, y_test)
print(acc)
predicted = model.predict(x_test)
names = ["unacc", "acc", "good", "vgood"]
for x in range(len(x_test)):
print("predicted: ", names[predicted[x]], "Data: ", x_test[x], "Actual: ", names[y_test[x]])
n = model.kneighbors([x_test[x]], 9, True)
print("N: ", n)