-
Notifications
You must be signed in to change notification settings - Fork 403
/
Copy pathdemo.py
228 lines (169 loc) · 7.14 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
Detects Cars in an image using KittiSeg.
Input: Image
Output: Image (with Cars plotted in Green)
Utilizes: Trained KittiSeg weights. If no logdir is given,
pretrained weights will be downloaded and used.
Usage:
python demo.py --input_image data/demo.png [--output_image output_image]
[--logdir /path/to/weights] [--gpus 0]
--------------------------------------------------------------------------------
The MIT License (MIT)
Copyright (c) 2017 Marvin Teichmann
Details: https://github.com/MarvinTeichmann/KittiSeg/blob/master/LICENSE
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import logging
import os
import sys
import collections
# configure logging
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
level=logging.INFO,
stream=sys.stdout)
# https://github.com/tensorflow/tensorflow/issues/2034#issuecomment-220820070
import numpy as np
import scipy as scp
import scipy.misc
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
sys.path.insert(1, 'incl')
from seg_utils import seg_utils as seg
try:
# Check whether setup was done correctly
import tensorvision.utils as tv_utils
import tensorvision.core as core
except ImportError:
# You forgot to initialize submodules
logging.error("Could not import the submodules.")
logging.error("Please execute:"
"'git submodule update --init --recursive'")
exit(1)
flags.DEFINE_string('logdir', None,
'Path to logdir.')
flags.DEFINE_string('input_image', None,
'Image to apply KittiSeg.')
flags.DEFINE_string('output_image', None,
'Image to apply KittiSeg.')
default_run = 'KittiSeg_pretrained'
weights_url = ("ftp://mi.eng.cam.ac.uk/"
"pub/mttt2/models/KittiSeg_pretrained.zip")
def maybe_download_and_extract(runs_dir):
logdir = os.path.join(runs_dir, default_run)
if os.path.exists(logdir):
# weights are downloaded. Nothing to do
return
if not os.path.exists(runs_dir):
os.makedirs(runs_dir)
download_name = tv_utils.download(weights_url, runs_dir)
logging.info("Extracting KittiSeg_pretrained.zip")
import zipfile
zipfile.ZipFile(download_name, 'r').extractall(runs_dir)
return
def resize_label_image(image, gt_image, image_height, image_width):
image = scp.misc.imresize(image, size=(image_height, image_width),
interp='cubic')
shape = gt_image.shape
gt_image = scp.misc.imresize(gt_image, size=(image_height, image_width),
interp='nearest')
return image, gt_image
def main(_):
tv_utils.set_gpus_to_use()
if FLAGS.input_image is None:
logging.error("No input_image was given.")
logging.info(
"Usage: python demo.py --input_image data/test.png "
"[--output_image output_image] [--logdir /path/to/weights] "
"[--gpus GPUs_to_use] ")
exit(1)
if FLAGS.logdir is None:
# Download and use weights from the MultiNet Paper
if 'TV_DIR_RUNS' in os.environ:
runs_dir = os.path.join(os.environ['TV_DIR_RUNS'],
'KittiSeg')
else:
runs_dir = 'RUNS'
maybe_download_and_extract(runs_dir)
logdir = os.path.join(runs_dir, default_run)
else:
logging.info("Using weights found in {}".format(FLAGS.logdir))
logdir = FLAGS.logdir
# Loading hyperparameters from logdir
hypes = tv_utils.load_hypes_from_logdir(logdir, base_path='hypes')
logging.info("Hypes loaded successfully.")
# Loading tv modules (encoder.py, decoder.py, eval.py) from logdir
modules = tv_utils.load_modules_from_logdir(logdir)
logging.info("Modules loaded successfully. Starting to build tf graph.")
# Create tf graph and build module.
with tf.Graph().as_default():
# Create placeholder for input
image_pl = tf.placeholder(tf.float32)
image = tf.expand_dims(image_pl, 0)
# build Tensorflow graph using the model from logdir
prediction = core.build_inference_graph(hypes, modules,
image=image)
logging.info("Graph build successfully.")
# Create a session for running Ops on the Graph.
sess = tf.Session()
saver = tf.train.Saver()
# Load weights from logdir
core.load_weights(logdir, sess, saver)
logging.info("Weights loaded successfully.")
input_image = FLAGS.input_image
logging.info("Starting inference using {} as input".format(input_image))
# Load and resize input image
image = scp.misc.imread(input_image)
if hypes['jitter']['reseize_image']:
# Resize input only, if specified in hypes
image_height = hypes['jitter']['image_height']
image_width = hypes['jitter']['image_width']
image = scp.misc.imresize(image, size=(image_height, image_width),
interp='cubic')
# Run KittiSeg model on image
feed = {image_pl: image}
softmax = prediction['softmax']
output = sess.run([softmax], feed_dict=feed)
# Reshape output from flat vector to 2D Image
shape = image.shape
output_image = output[0][:, 1].reshape(shape[0], shape[1])
# Plot confidences as red-blue overlay
rb_image = seg.make_overlay(image, output_image)
# Accept all pixel with conf >= 0.5 as positive prediction
# This creates a `hard` prediction result for class street
threshold = 0.5
street_prediction = output_image > threshold
# Plot the hard prediction as green overlay
green_image = tv_utils.fast_overlay(image, street_prediction)
# Save output images to disk.
if FLAGS.output_image is None:
output_base_name = input_image
else:
output_base_name = FLAGS.output_image
raw_image_name = output_base_name.split('.')[0] + '_raw.png'
rb_image_name = output_base_name.split('.')[0] + '_rb.png'
green_image_name = output_base_name.split('.')[0] + '_green.png'
scp.misc.imsave(raw_image_name, output_image)
scp.misc.imsave(rb_image_name, rb_image)
scp.misc.imsave(green_image_name, green_image)
logging.info("")
logging.info("Raw output image has been saved to: {}".format(
os.path.realpath(raw_image_name)))
logging.info("Red-Blue overlay of confs have been saved to: {}".format(
os.path.realpath(rb_image_name)))
logging.info("Green plot of predictions have been saved to: {}".format(
os.path.realpath(green_image_name)))
logging.info("")
logging.warning("Do NOT use this Code to evaluate multiple images.")
logging.warning("Demo.py is **very slow** and designed "
"to be a tutorial to show how the KittiSeg works.")
logging.warning("")
logging.warning("Please see this comment, if you like to apply demo.py to"
"multiple images see:")
logging.warning("https://github.com/MarvinTeichmann/KittiBox/"
"issues/15#issuecomment-301800058")
if __name__ == '__main__':
tf.app.run()