-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindex.js
916 lines (755 loc) · 32 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
const fs = require('fs')
const readline = require('readline')
const EditDistance = require('./edit-distance')
const Helpers = require('./helpers')
// Spelling suggestion returned from Lookup.
class SuggestItem {
// Create a new instance of SuggestItem.
// term: The suggested word.
// distance: Edit distance from search word.
// count: Frequency of suggestion in dictionary.
constructor (term = '', distance = 0, count = 0) {
// The suggested correctly spelled word.
this.term = term
// Edit distance between searched for word and suggestion.
this.distance = distance
// Frequency of suggestion in the dictionary (a measure of how common the word is).
this.count = count
}
compareTo (other) {
// order by distance ascending, then by frequency count descending
if (this.distance === other.distance) {
return this.count - other.count
}
return other.distance - this.distance
}
}
class SymSpell {
// number of all words in the corpus used to generate the frequency dictionary
// this is used to calculate the word occurrence probability p from word counts c : p=c/N
// N equals the sum of all counts c in the dictionary only if the dictionary is complete, but not if the dictionary is truncated or filtered
static get N () {
return 1024908267229
}
static get Verbosity () {
// verbosity=Top: the suggestion with the highest term frequency of the suggestions of smallest edit distance found
// verbosity=Closest: all suggestions of smallest edit distance found, the suggestions are ordered by term frequency
// verbosity=All: all suggestions <= maxEditDistance, the suggestions are ordered by edit distance, then by term frequency (slower, no early termination)
return {
TOP: 0,
CLOSEST: 1,
ALL: 2
}
}
constructor (
maxDictionaryEditDistance = 2,
prefixLength = 7,
countThreshold = 1
) {
this.maxDictionaryEditDistance = maxDictionaryEditDistance
this.prefixLength = prefixLength
this.countThreshold = countThreshold
this.words = new Map()
this.maxDictionaryWordLength = 0
this.deletes = new Map()
this.belowThresholdWords = new Map()
this.bigrams = new Map()
this.bigramCountMin = Number.MAX_SAFE_INTEGER
}
// Create/Update an entry in the dictionary.
// For every word there are deletes with an edit distance of 1..maxEditDistance created and added to the
// dictionary. Every delete entry has a suggestions list, which points to the original term(s) it was created from.
// The dictionary may be dynamically updated (word frequency and new words) at any time by calling createDictionaryEntry
// key: The word to add to dictionary.
// count: The frequency count for word.
// staging: Optional staging object to speed up adding many entries by staging them to a temporary structure.
// returns -> True if the word was added as a new correctly spelled word, or false if the word is added as a below threshold word, or updates an existing correctly spelled word.
createDictionaryEntry (key, count) {
if (count <= 0) {
if (this.countThreshold > 0) return false // no point doing anything if count is zero, as it can't change anything
count = 0
}
let countPrevious = -1
// look first in below threshold words, update count, and allow promotion to correct spelling word if count reaches threshold
// threshold must be >1 for there to be the possibility of low threshold words
if (this.countThreshold > 1 && this.belowThresholdWords.has(key)) {
countPrevious = this.belowThresholdWords.get(key)
// calculate new count for below threshold word
count = (Number.MAX_SAFE_INTEGER - countPrevious > count) ? countPrevious + count : Number.MAX_SAFE_INTEGER
// has reached threshold - remove from below threshold collection (it will be added to correct words below)
if (count >= this.countThreshold) {
this.belowThresholdWords.delete(key)
}
else {
this.belowThresholdWords.set(key, count)
return false
}
}
else if (this.words.has(key)) {
countPrevious = this.words.get(key)
// just update count if it's an already added above threshold word
count = (Number.MAX_SAFE_INTEGER - countPrevious > count) ? countPrevious + count : Number.MAX_SAFE_INTEGER
this.words.set(key, count)
return false
}
else if (count < this.countThreshold) {
// new or existing below threshold word
this.belowThresholdWords.set(key, count)
return false
}
// what we have at this point is a new, above threshold word
this.words.set(key, count)
// edits/suggestions are created only once, no matter how often word occurs
// edits/suggestions are created only as soon as the word occurs in the corpus,
// even if the same term existed before in the dictionary as an edit from another word
if (key.length > this.maxDictionaryWordLength) {
this.maxDictionaryWordLength = key.length
}
// create deletes
const edits = this.editsPrefix(key)
// put suggestions directly into main data structure
edits.forEach((val, del) => {
if (!this.deletes.has(del)) {
this.deletes.set(del, [])
}
this.deletes.get(del).push(key)
})
return true
}
// Load multiple dictionary entries from a file of word/frequency count pairs
// Merges with any dictionary data already loaded.
// corpus: The path+filename of the file.
// termIndex: The column position of the word.
// countIndex: The column position of the frequency count.
// separator: Separator characters between term(s) and count.
// returns ->True if file loaded, or false if file not found.
async loadBigramDictionary (dictFile, termIndex, countIndex, separator = ' ') {
const lines = readline.createInterface({
input: fs.createReadStream(dictFile, 'utf8'),
output: process.stdout,
terminal: false
})
for await (const line of lines) {
const linePartsLength = (separator === ' ') ? 3 : 2
const lineParts = line.trim().split(separator)
if (lineParts.length >= linePartsLength) {
// if default (whitespace) is defined as separator take 2 term parts, otherwise take only one
const key = (separator === ' ') ? lineParts[termIndex] + ' ' + lineParts[termIndex + 1] : lineParts[termIndex]
// Int64 count;
const count = parseInt(lineParts[countIndex], 10)
this.bigrams.set(key, count)
if (count < this.bigramCountMin) {
this.bigramCountMin = count
}
}
}
return true
}
// Load multiple dictionary entries from a file of word/frequency count pairs
// Merges with any dictionary data already loaded.
// corpus: The path+filename of the file.
// termIndex: The column position of the word.
// countIndex: The column position of the frequency count.
// separator: Separator characters between term(s) and count.
// returns ->True if file loaded, or false if file not found.
async loadDictionary (dictFile, termIndex, countIndex, separator = ' ') {
const lines = readline.createInterface({
input: fs.createReadStream(dictFile, 'utf8'),
output: process.stdout,
terminal: false
})
for await (const line of lines) {
const lineParts = line.trim().split(separator)
if (lineParts.length >= 2) {
const key = lineParts[termIndex]
const count = parseInt(lineParts[countIndex], 10)
this.createDictionaryEntry(key, count)
}
}
return true
}
// Load multiple dictionary words from a file containing plain text.
// Merges with any dictionary data already loaded.
// corpus: The path+filename of the file.
// returns ->True if file loaded, or false if file not found.
async createDictionary (dictFile) {
const lines = readline.createInterface({
input: fs.createReadStream(dictFile, 'utf8'),
output: process.stdout,
terminal: false
})
for await (const line of lines) {
this.parseWords(line).forEach((key) => {
this.createDictionaryEntry(key, 1)
})
}
return true
}
// Find suggested spellings for a given input word.
// input: The word being spell checked.
// verbosity: The value controlling the quantity/closeness of the retuned suggestions.
// maxEditDistance: The maximum edit distance between input and suggested words.
// includeUnknown: Include input word in suggestions, if no words within edit distance found.
// returns ->A List of SuggestItem object representing suggested correct spellings for the input word,
// sorted by edit distance, and secondarily by count frequency.
lookup (input, verbosity, maxEditDistance = null, { includeUnknown, ignoreToken, transferCasing } = {}) {
// maxEditDistance used in Lookup can't be bigger than the maxDictionaryEditDistance
// used to construct the underlying dictionary structure.
if (maxEditDistance === null) {
maxEditDistance = this.maxDictionaryEditDistance
}
let suggestions = []
const inputLen = input.length
let originalPhrase = ''
if (transferCasing) {
originalPhrase = input
input = input.toLowerCase()
}
const earlyExit = () => {
if (includeUnknown && suggestions.length === 0) {
suggestions.push(new SuggestItem(input, maxEditDistance + 1, 0))
}
return suggestions
}
// early exit - word is too big to possibly match any words
if (inputLen - maxEditDistance > this.maxDictionaryWordLength) {
return earlyExit()
}
// quick look for exact match
let suggestionCount = 0
if (this.words.has(input)) {
suggestionCount = this.words.get(input)
suggestions.push(new SuggestItem(input, 0, suggestionCount))
// early exit - return exact match, unless caller wants all matches
if (verbosity !== SymSpell.Verbosity.ALL) {
return earlyExit()
}
}
if (ignoreToken && input.match(ignoreToken)) {
suggestionCount = 1
suggestions.push(new SuggestItem(input, 0, suggestionCount))
// early exit - return exact match, unless caller wants all matches
if (verbosity !== SymSpell.Verbosity.ALL) {
return earlyExit()
}
}
// early termination, if we only want to check if word in dictionary or get its frequency e.g. for word segmentation
if (maxEditDistance === 0) {
return earlyExit()
}
const consideredDeletes = new Set()
const consideredSuggestions = new Set()
// we considered the input already in the words.has(input) above
consideredSuggestions.add(input)
let maxEditDistance2 = maxEditDistance
let candidatePointer = 0
const candidates = []
// add original prefix
let inputPrefixLen = inputLen
if (inputPrefixLen > this.prefixLength) {
inputPrefixLen = this.prefixLength
candidates.push(input.substr(0, inputPrefixLen))
}
else {
candidates.push(input)
}
const distanceComparer = new EditDistance()
while (candidatePointer < candidates.length) {
const candidate = candidates[candidatePointer]
candidatePointer += 1
const candidateLen = candidate.length
const lengthDiff = inputPrefixLen - candidateLen
// save some time - early termination
// if canddate distance is already higher than suggestion distance, than there are no better suggestions to be expected
if (lengthDiff > maxEditDistance2) {
// skip to next candidate if Verbosity.ALL, look no further if Verbosity.TOP or Closest
// (candidates are ordered by delete distance, so none are closer than current)
if (verbosity === SymSpell.Verbosity.ALL) {
continue
}
break
}
// read candidate entry from dictionary
if (this.deletes.has(candidate)) {
const dictSuggestions = this.deletes.get(candidate)
for (let i = 0; i < dictSuggestions.length; i++) {
const suggestion = dictSuggestions[i]
if (suggestion === input) {
continue
}
const suggestionLen = suggestion.length
if (
Math.abs(suggestionLen - inputLen) > maxEditDistance2 || // input and sugg lengths diff > allowed/current best distance
suggestionLen < candidateLen || // sugg must be for a different delete string, in same bin only because of hash collision
(suggestionLen === candidateLen && suggestion !== candidate) // if sugg len = delete len, then it either equals delete or is in same bin only because of hash collision
) {
continue
}
const suggPrefixLen = Math.min(suggestionLen, this.prefixLength)
if (suggPrefixLen > inputPrefixLen && (suggPrefixLen - candidateLen) > maxEditDistance2) {
continue
}
// True Damerau-Levenshtein Edit Distance: adjust distance, if both distances>0
// We allow simultaneous edits (deletes) of maxEditDistance on on both the dictionary and the input term.
// For replaces and adjacent transposes the resulting edit distance stays <= maxEditDistance.
// For inserts and deletes the resulting edit distance might exceed maxEditDistance.
// To prevent suggestions of a higher edit distance, we need to calculate the resulting edit distance, if there are simultaneous edits on both sides.
// Example: (bank==bnak and bank==bink, but bank!=kanb and bank!=xban and bank!=baxn for maxEditDistance=1)
// Two deletes on each side of a pair makes them all equal, but the first two pairs have edit distance=1, the others edit distance=2.
let distance = 0
let min = 0
if (candidateLen === 0) {
// suggestions which have no common chars with input (inputLen<=maxEditDistance && suggestionLen<=maxEditDistance)
distance = Math.max(inputLen, suggestionLen)
if (distance > maxEditDistance2 || consideredSuggestions.has(suggestion)) {
continue
}
}
else if (suggestionLen === 1) {
distance = (input.indexOf(suggestion[0]) < 0) ? inputLen : inputLen - 1
if (distance > maxEditDistance2 || consideredSuggestions.has(suggestion)) {
continue
}
}
// number of edits in prefix ==maxediddistance AND no identic suffix , then editdistance>maxEditDistance and no need for Levenshtein calculation (inputLen >= this.prefixLength) && (suggestionLen >= this.prefixLength)
else {
if (this.prefixLength - maxEditDistance === candidateLen) {
min = Math.min(inputLen, suggestionLen) - this.prefixLength
}
if (
this.prefixLength - maxEditDistance === candidateLen &&
((
min > 1 &&
input.substr(inputLen + 1 - min) !== suggestion.substr(suggestionLen + 1 - min)
) ||
(
min > 0 &&
input[inputLen - min] !== suggestion[suggestionLen - min] &&
(
input[inputLen - min - 1] !== suggestion[suggestionLen - min] ||
input[inputLen - min] !== suggestion[suggestionLen - min - 1]
)
))
) {
continue
}
else {
// deleteInSuggestionPrefix is somewhat expensive, and only pays off when verbosity is Top or Closest.
if (
(
verbosity !== SymSpell.Verbosity.ALL &&
!this.deleteInSuggestionPrefix(candidate, candidateLen, suggestion, suggestionLen)
) || consideredSuggestions.has(suggestion)
) {
continue
}
consideredSuggestions.add(suggestion)
distance = distanceComparer.compare(input, suggestion, maxEditDistance2)
if (distance < 0) {
continue
}
}
}
// save some time
// do not process higher distances than those already found, if verbosity<All (note: maxEditDistance2 will always equal maxEditDistance when Verbosity.ALL)
if (distance <= maxEditDistance2) {
const suggestionCount = this.words.get(suggestion)
const si = new SuggestItem(suggestion, distance, suggestionCount)
if (suggestions.length > 0) {
switch (verbosity) {
case SymSpell.Verbosity.CLOSEST: {
// we will calculate DamLev distance only to the smallest found distance so far
if (distance < maxEditDistance2) {
suggestions = []
}
break
}
case SymSpell.Verbosity.TOP: {
if (distance < maxEditDistance2 || suggestionCount > suggestions[0].count) {
maxEditDistance2 = distance
suggestions[0] = si
}
continue
}
}
}
if (verbosity !== SymSpell.Verbosity.ALL) {
maxEditDistance2 = distance
}
suggestions.push(si)
}
} // end foreach
} // end if
// add edits
// derive edits (deletes) from candidate (input) and add them to candidates list
// this is a recursive process until the maximum edit distance has been reached
if (lengthDiff < maxEditDistance && candidateLen <= this.prefixLength) {
// save some time
// do not create edits with edit distance smaller than suggestions already found
if (verbosity !== SymSpell.Verbosity.ALL && lengthDiff >= maxEditDistance2) {
continue
}
for (let i = 0; i < candidateLen; i++) {
const del = candidate.slice(0, i) + candidate.slice(i + 1, candidate.length)
if (!consideredDeletes.has(del)) {
consideredDeletes.add(del)
candidates.push(del)
}
}
}
} // end while
// sort by ascending edit distance, then by descending word frequency
if (suggestions.length > 1) {
suggestions.sort((a, b) => a.compareTo(b)).reverse()
}
if (transferCasing) {
suggestions = suggestions.map((s) => {
return new SuggestItem(Helpers.transferCasingSimilar(originalPhrase, s.term), s.distance, s.count)
})
}
return earlyExit()
}
// check whether all delete chars are present in the suggestion prefix in correct order, otherwise this is just a hash collision
deleteInSuggestionPrefix (del, deleteLen, suggestion, suggestionLen) {
if (deleteLen === 0) {
return true
}
if (this.prefixLength < suggestionLen) {
suggestionLen = this.prefixLength
}
let j = 0
for (let i = 0; i < deleteLen; i++) {
const delChar = del[i]
while (j < suggestionLen && delChar !== suggestion[j]) {
j++
}
if (j === suggestionLen) {
return false
}
}
return true
}
// create a non-unique wordlist from sample text
// language independent (e.g. works with Chinese characters)
parseWords (text) {
// \w Alphanumeric characters (including non-latin characters, umlaut characters and digits) plus "_"
// \d Digits
// Compatible with non-latin characters, does not split words at apostrophes
const matches = text.toLowerCase().matchAll(/(([^\W_]|['’])+)/g)
return Array.from(matches, (match) => match[0])
}
// inexpensive and language independent: only deletes, no transposes + replaces + inserts
// replaces and inserts are expensive and language dependent (Chinese has 70,000 Unicode Han characters)
edits (word, editDistance, deleteWords) {
editDistance++
if (word.length > 1) {
for (let i = 0; i < word.length; i++) {
const del = word.slice(0, i) + word.slice(i + 1, word.length)
if (!deleteWords.has(del)) {
deleteWords.add(del)
// recursion, if maximum edit distance not yet reached
if (editDistance < this.maxDictionaryEditDistance) {
this.edits(del, editDistance, deleteWords)
}
}
}
}
return deleteWords
}
editsPrefix (key) {
const hashSet = new Set()
if (key.length <= this.maxDictionaryEditDistance) {
hashSet.add('')
}
if (key.length > this.prefixLength) {
key = key.substr(0, this.prefixLength)
}
hashSet.add(key)
return this.edits(key, 0, hashSet)
}
// ######################
// LookupCompound supports compound aware automatic spelling correction of multi-word input strings with three cases:
// 1. mistakenly inserted space into a correct word led to two incorrect terms
// 2. mistakenly omitted space between two correct words led to one incorrect combined term
// 3. multiple independent input terms with/without spelling errors
// Find suggested spellings for a multi-word input string (supports word splitting/merging).
// input: The string being spell checked.
// maxEditDistance: The maximum edit distance between input and suggested words.
// returns ->A List of SuggestItem object representing suggested correct spellings for the input string.
lookupCompound (input, maxEditDistance = null, { ignoreNonWords, transferCasing } = {}) {
if (maxEditDistance === null) {
maxEditDistance = this.maxDictionaryEditDistance
}
// parse input string into single terms
const termList1 = Helpers.parseWordsCase(input)
let termList2 = []
if (ignoreNonWords) {
termList2 = Helpers.parseWordsCase(input, true)
}
let suggestions = [] // suggestions for a single term
const suggestionParts = [] // 1 line with separate parts
const distanceComparer = new EditDistance()
// translate every term to its best suggestion, otherwise it remains unchanged
let lastCombi = false
for (let i = 0; i < termList1.length; i++) {
if (ignoreNonWords) {
if (parseInt(termList1[i], 10)) {
suggestionParts.push(new SuggestItem(termList1[i], 0, 0))
continue
}
if (Helpers.isAcronym(termList2[i])) {
suggestionParts.push(new SuggestItem(termList2[i], 0, 0))
continue
}
}
suggestions = this.lookup(termList1[i], SymSpell.Verbosity.TOP, maxEditDistance)
// combi check, always before split
if (i > 0 && !lastCombi) {
const suggestionsCombi = this.lookup(termList1[i - 1] + termList1[i], SymSpell.Verbosity.TOP, maxEditDistance)
if (suggestionsCombi.length > 0) {
const best1 = suggestionParts[suggestionParts.length - 1]
let best2 = new SuggestItem()
if (suggestions.length > 0) {
best2 = suggestions[0]
}
else {
// unknown word
best2.term = termList1[i]
// estimated edit distance
best2.distance = maxEditDistance + 1
// estimated word occurrence probability P=10 / (N * 10^word length l)
best2.count = 10 / Math.pow(10, best2.term.length) // 0;
}
// distance1=edit distance between 2 split terms und their best corrections : als comparative value for the combination
const distance1 = best1.distance + best2.distance
if (
distance1 >= 0 &&
(
suggestionsCombi[0].distance + 1 < distance1 ||
(
suggestionsCombi[0].distance + 1 === distance1 &&
suggestionsCombi[0].count > best1.count / SymSpell.N * best2.count
)
)
) {
suggestionsCombi[0].distance++
suggestionParts[suggestionParts.length - 1] = suggestionsCombi[0]
lastCombi = true
continue
}
}
}
lastCombi = false
// alway split terms without suggestion / never split terms with suggestion ed=0 / never split single char terms
if (suggestions.length > 0 && (suggestions[0].distance === 0 || termList1[i].length === 1)) {
// choose best suggestion
suggestionParts.push(suggestions[0])
}
else {
// if no perfect suggestion, split word into pairs
let suggestionSplitBest = null
// add original term
if (suggestions.length > 0) {
suggestionSplitBest = suggestions[0]
}
if (termList1[i].length > 1) {
for (let j = 1; j < termList1[i].length; j++) {
const part1 = termList1[i].substr(0, j)
const part2 = termList1[i].substr(j)
const suggestionSplit = new SuggestItem()
const suggestions1 = this.lookup(part1, SymSpell.Verbosity.TOP, maxEditDistance)
if (suggestions1.length > 0) {
const suggestions2 = this.lookup(part2, SymSpell.Verbosity.TOP, maxEditDistance)
if (suggestions2.length > 0) {
// select best suggestion for split pair
suggestionSplit.term = suggestions1[0].term + ' ' + suggestions2[0].term
let distance2 = distanceComparer.compare(termList1[i], suggestionSplit.term, maxEditDistance)
if (distance2 < 0) {
distance2 = maxEditDistance + 1
}
if (suggestionSplitBest !== null) {
if (distance2 > suggestionSplitBest.distance) {
continue
}
if (distance2 < suggestionSplitBest.distance) {
suggestionSplitBest = null
}
}
suggestionSplit.distance = distance2
// if bigram exists in bigram dictionary
if (this.bigrams.has(suggestionSplit.term)) {
const bigramCount = this.bigrams.get(suggestionSplit.term)
suggestionSplit.count = bigramCount
// increase count, if split.corrections are part of or identical to input
// single term correction exists
if (suggestions.length > 0) {
// alternatively remove the single term from suggestionsSplit, but then other splittings could win
if ((suggestions1[0].term + suggestions2[0].term === termList1[i])) {
// make count bigger than count of single term correction
suggestionSplit.count = Math.max(suggestionSplit.count, suggestions[0].count + 2)
}
else if (suggestions1[0].term === suggestions[0].term || suggestions2[0].term === suggestions[0].term) {
// make count bigger than count of single term correction
suggestionSplit.count = Math.max(suggestionSplit.count, suggestions[0].count + 1)
}
}
// no single term correction exists
else if (suggestions1[0].term + suggestions2[0].term === termList1[i]) {
suggestionSplit.count = Math.max(suggestionSplit.count, Math.max(suggestions1[0].count, suggestions2[0].count) + 2)
}
}
else {
// The Naive Bayes probability of the word combination is the product of the two word probabilities: P(AB) = P(A) * P(B)
// use it to estimate the frequency count of the combination, which then is used to rank/select the best splitting variant
suggestionSplit.count = Math.floor(Math.min(this.bigramCountMin, suggestions1[0].count / SymSpell.N * suggestions2[0].count))
}
if (suggestionSplitBest === null || suggestionSplit.count > suggestionSplitBest.count) {
suggestionSplitBest = suggestionSplit
}
}
}
}
if (suggestionSplitBest !== null) {
// select best suggestion for split pair
suggestionParts.push(suggestionSplitBest)
}
else {
const si = new SuggestItem()
si.term = termList1[i]
// estimated word occurrence probability P=10 / (N * 10^word length l)
si.count = Math.floor(10 / Math.pow(10, si.term.length))
si.distance = maxEditDistance + 1
suggestionParts.push(si)
}
}
else {
const si = new SuggestItem()
si.term = termList1[i]
// estimated word occurrence probability P=10 / (N * 10^word length l)
si.count = Math.floor(10 / Math.pow(10, si.term.length))
si.distance = maxEditDistance + 1
suggestionParts.push(si)
}
}
}
const suggestion = new SuggestItem()
let count = SymSpell.N
let s = ''
suggestionParts.forEach((si) => {
s += si.term + ' '
count *= si.count / SymSpell.N
})
suggestion.count = Math.floor(count)
suggestion.term = s.trimEnd()
if (transferCasing) {
suggestion.term = Helpers.transferCasingSimilar(input, suggestion.term)
}
suggestion.distance = distanceComparer.compare(input, suggestion.term, Number.MAX_SAFE_INTEGER)
const suggestionsLine = []
suggestionsLine.push(suggestion)
return suggestionsLine
}
// ######
// WordSegmentation divides a string into words by inserting missing spaces at the appropriate positions
// misspelled words are corrected and do not affect segmentation
// existing spaces are allowed and considered for optimum segmentation
// SymSpell.WordSegmentation uses a novel approach *without* recursion.
// https://medium.com/@wolfgarbe/fast-word-segmentation-for-noisy-text-2c2c41f9e8da
// While each string of length n can be segmentend in 2^n−1 possible compositions https://en.wikipedia.org/wiki/Composition_(combinatorics)
// SymSpell.WordSegmentation has a linear runtime O(n) to find the optimum composition
/// Find suggested spellings for a multi-word input string (supports word splitting/merging).
/// input: The string being spell checked.
/// maxSegmentationWordLength: The maximum word length that should be considered.
/// maxEditDistance: The maximum edit distance between input and corrected words
/// (0=no correction/segmentation only).
/// The word segmented string as segmentedString,
/// the word segmented and spelling corrected string as correctedString,
/// the Edit distance sum between input string and corrected string as distanceSum,
/// the Sum of word occurence probabilities in log scale (a measure of how common and probable the corrected segmentation is) as probabilityLogSum.
wordSegmentation (input, { maxEditDistance = null, maxSegmentationWordLength = null, ignoreToken } = {}) {
if (maxEditDistance === null) {
maxEditDistance = this.maxDictionaryEditDistance
}
if (maxSegmentationWordLength === null) {
maxSegmentationWordLength = this.maxDictionaryWordLength
}
const arraySize = Math.min(maxSegmentationWordLength, input.length)
const compositions = new Array(arraySize)
let circularIndex = -1
// outer loop (column): all possible part start positions
for (let j = 0; j < input.length; j++) {
// inner loop (row): all possible part lengths (from start position): part can't be bigger than longest word in dictionary (other than long unknown word)
const imax = Math.min(input.length - j, maxSegmentationWordLength)
for (let i = 1; i <= imax; i++) {
// get top spelling correction/ed for part
let part = input.substr(j, i)
let separatorLength = 0
let topEd = 0
let topProbabilityLog = 0
let topResult = ''
// if it's whitespace
if (part[0].match(/\s/)) {
// remove space for levensthein calculation
part = part.substr(1)
}
else {
// add ed+1: space did not exist, had to be inserted
separatorLength = 1
}
// remove space from part1, add number of removed spaces to topEd
topEd += part.length
// remove space
part = part.replace(/\s+/g, '') //= System.Text.RegularExpressions.Regex.Replace(part1, @"\s+", "");
// add number of removed spaces to ed
topEd -= part.length
const results = this.lookup(part, SymSpell.Verbosity.TOP, maxEditDistance, { ignoreToken })
if (results.length > 0) {
topResult = results[0].term
topEd += results[0].distance
// Naive Bayes Rule
// we assume the word probabilities of two words to be independent
// therefore the resulting probability of the word combination is the product of the two word probabilities
// instead of computing the product of probabilities we are computing the sum of the logarithm of probabilities
// because the probabilities of words are about 10^-10, the product of many such small numbers could exceed (underflow) the floating number range and become zero
// log(ab)=log(a)+log(b)
topProbabilityLog = Math.log10(results[0].count / SymSpell.N)
}
else {
topResult = part
// default, if word not found
// otherwise long input text would win as long unknown word (with ed=edmax+1 ), although there there should many spaces inserted
topEd += part.length
topProbabilityLog = Math.log10(10.0 / (SymSpell.N / Math.pow(10.0, part.length)))
}
const destinationIndex = (i + circularIndex) % arraySize
// set values in first loop
if (j === 0) {
compositions[destinationIndex] = {
segmentedString: part,
correctedString: topResult,
distanceSum: topEd,
probabilityLogSum: topProbabilityLog
}
}
else if ((i === maxSegmentationWordLength) ||
// replace values if better probabilityLogSum, if same edit distance OR one space difference
(((compositions[circularIndex].distanceSum + topEd === compositions[destinationIndex].distanceSum) || (compositions[circularIndex].distanceSum + separatorLength + topEd === compositions[destinationIndex].distanceSum)) && (compositions[destinationIndex].probabilityLogSum < compositions[circularIndex].probabilityLogSum + topProbabilityLog)) ||
// replace values if smaller edit distance
(compositions[circularIndex].distanceSum + separatorLength + topEd < compositions[destinationIndex].distanceSum)) {
compositions[destinationIndex] = {
segmentedString: (compositions[circularIndex].segmentedString || '') + ' ' + part,
correctedString: (compositions[circularIndex].correctedString || '') + ' ' + topResult,
distanceSum: (compositions[circularIndex].distanceSum || 0) + separatorLength + topEd,
probabilityLogSum: (compositions[circularIndex].probabilityLogSum || 0) + topProbabilityLog
}
}
}
circularIndex += 1
if (circularIndex === arraySize) {
circularIndex = 0
}
}
return compositions[circularIndex]
}
}
module.exports = SymSpell