-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
162 lines (132 loc) · 7.85 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Multi-structure Regions of Interest
#
# References :
# CNN structure based on VGG16, https://github.com/ry/tensorflow-vgg16/blob/master/vgg16.py
# Channel independent feature maps (3D features) using https://www.tensorflow.org/versions/r0.11/api_docs/python/nn.html#depthwise_conv2d_native
# GAP based on https://github.com/jazzsaxmafia/Weakly_detector/blob/master/src/detector.py
# Conv2d layer based on https://github.com/carpedm20/DCGAN-tensorflow/blob/master/ops.py
#import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import _pickle
from params import CNNParams, HyperParams
hyper = HyperParams(verbose=False)
cnn_param = CNNParams(verbose=False)
def print_model_params(verbose=True):
total_parameters = 0
for variable in tf.trainable_variables():
shape = variable.get_shape()
if verbose: print("name: " + str(variable.name) + " - shape:" + str(shape))
variable_parametes = 1
for dim in shape:
variable_parametes *= dim.value
if verbose: print("variable parameters: " , variable_parametes)
total_parameters += variable_parametes
if verbose: print("total params: ", total_parameters)
return total_parameters
class CNN():
def load_vgg_weights(self):
with open(hyper.vgg_weights) as f:
self.pretrained_weights = cPickle.load(f)
def get_vgg_weights(self, layer_name, bias=False):
layer = self.pretrained_weights[layer_name]
if bias: return layer[1]
# tranpose because VGG weights were stored in diffeerent order
return layer[0].transpose((2,3,1,0))
def conv2d_depth_or_not(self, input_, name, nonlinearity=None):
with tf.variable_scope(name) as scope:
W_shape = cnn_param.layer_shapes[name + '/W']
b_shape = cnn_param.layer_shapes[name + '/b']
if hyper.fine_tuning and name not in ['conv6', 'conv6_1', 'depth']:
# because conv6, conv6_1, and depth are the layers added on top of VGG
# hence not present in VGG
W = self.get_vgg_weights(name)
b = self.get_vgg_weights(name, bias=True)
W_initializer = tf.constant_initializer(W)
b_initializer = tf.constant_initializer(b)
else:
W_initializer = tf.truncated_normal_initializer(stddev=hyper.stddev)
b_initializer = tf.constant_initializer(0.0)
conv_weights = tf.get_variable("W", shape=W_shape, initializer=W_initializer)
conv_biases = tf.get_variable("b", shape=b_shape, initializer=b_initializer)
if name == 'depth':
# learn different filter for each input channel
# thus the number of input channel has to be reduced
conv = tf.nn.depthwise_conv2d_native(input_, conv_weights, [1,1,1,1], padding='SAME')
# conv = tf.nn.separable_conv2d(input_, conv_weights, [1,1,1,1], padding='SAME')
else:
conv = tf.nn.conv2d(input_, conv_weights, [1,1,1,1], padding='SAME')
bias = tf.nn.bias_add(conv, conv_biases)
bias = tf.nn.dropout(bias,0.7)
if nonlinearity is None:
return bias
return nonlinearity(bias, name=name)
# currently not required, but for experimentation purposes
# there are two FCL layer at the end of VGG NET
def fully_connected_layer(self, input_, input_size, output_size, name, nonlinearity=None):
shape = input_.get_shape().to_list()
x = tf.reshape(input_, [-1, np.prod(shape[1:])])
with tf.variable_scope(name) as scope:
W = tf.get_variable("W", shape=[input_size, output_size],
initializer=tf.random_normal_initializer(stddev=hyper.stddev))
b = tf.get_variable("b", shape=[output_size], initializer=tf.constant_initializer(0.))
bias = tf.nn.bias_add(tf.matmul(x, W), b, name=scope)
if nonlinearity is None:
return bias
return nonlinearity(bias, name=name)
return nonlinearity(bias, name=name)
def image_conversion_scaling(self, image):
# Conversion to bgr and mean substraction is common with VGGNET
# Because pre-trained values use them, https://arxiv.org/pdf/1409.1556.pdf
image *= 255.
r, g, b = tf.split(image, 3, 3)
VGG_MEAN = [103.939, 116.779, 123.68]
return tf.concat([b-VGG_MEAN[0], g-VGG_MEAN[1], r-VGG_MEAN[2]], 3)
def build(self, image):
image = self.image_conversion_scaling(image)
conv1_1 = self.conv2d_depth_or_not(image, "conv1_1", nonlinearity=tf.nn.relu)
conv1_2 = self.conv2d_depth_or_not(conv1_1, "conv1_2", nonlinearity=tf.nn.relu)
pool1 = tf.nn.max_pool(conv1_2, ksize=cnn_param.pool_window,
strides=cnn_param.pool_stride, padding='SAME', name='pool1')
conv2_1 = self.conv2d_depth_or_not(pool1, "conv2_1", nonlinearity=tf.nn.relu)
conv2_2 = self.conv2d_depth_or_not(conv2_1, "conv2_2", nonlinearity=tf.nn.relu)
pool2 = tf.nn.max_pool(conv2_2, ksize=cnn_param.pool_window,
strides=cnn_param.pool_stride, padding='SAME', name='pool2')
conv3_1 = self.conv2d_depth_or_not(pool2, "conv3_1", nonlinearity=tf.nn.relu)
conv3_2 = self.conv2d_depth_or_not(conv3_1, "conv3_2", nonlinearity=tf.nn.relu)
conv3_3 = self.conv2d_depth_or_not(conv3_2, "conv3_3", nonlinearity=tf.nn.relu)
pool3 = tf.nn.max_pool(conv3_3, ksize=cnn_param.pool_window,
strides=cnn_param.pool_stride, padding='SAME', name='pool3')
conv4_1 = self.conv2d_depth_or_not(pool3, "conv4_1", nonlinearity=tf.nn.relu)
conv4_2 = self.conv2d_depth_or_not(conv4_1, "conv4_2", nonlinearity=tf.nn.relu)
conv4_3 = self.conv2d_depth_or_not(conv4_2, "conv4_3", nonlinearity=tf.nn.relu)
pool4 = tf.nn.max_pool(conv4_3, ksize=cnn_param.pool_window,
strides=cnn_param.pool_stride, padding='SAME', name='pool4')
conv5_1 = self.conv2d_depth_or_not(pool4, "conv5_1", nonlinearity=tf.nn.relu)
conv5_2 = self.conv2d_depth_or_not(conv5_1, "conv5_2", nonlinearity=tf.nn.relu)
conv5_3 = self.conv2d_depth_or_not(conv5_2, "conv5_3", nonlinearity=tf.nn.relu)
# feature wise convolution layers, no non-linearity
conv_depth_1 = self.conv2d_depth_or_not(conv5_3, "conv6_1")
# two layer of feature-wise convolution, a cubic feature transformation
conv_depth = self.conv2d_depth_or_not(conv_depth_1, "depth")
# this is a replcement of last FCL layer from VGG (common in GAP & GMP models)
# this layer does not have non-nonlinearity
conv_last = self.conv2d_depth_or_not(conv_depth, "conv6")
gap = tf.reduce_mean(conv_last, [1,2])
with tf.variable_scope("GAP"):
gap_w = tf.get_variable("W", shape=cnn_param.layer_shapes['GAP/W'],
initializer=tf.random_normal_initializer(stddev=hyper.stddev))
class_prob = tf.matmul(gap, gap_w)
# print_model_params()
return conv_last, gap, class_prob
def p(self,t):
print(t.name, t.get_shape())
def get_classmap(self, class_, conv_last):
with tf.variable_scope("GAP", reuse=True):
class_w = tf.gather(tf.transpose(tf.get_variable("W")), class_)
class_w = tf.reshape(class_w, [-1, cnn_param.last_features, 1])
conv_last_ = tf.image.resize_bilinear(conv_last, [hyper.image_h, hyper.image_w])
conv_last_ = tf.reshape(conv_last_, [-1, hyper.image_h*hyper.image_w, cnn_param.last_features])
classmap = tf.reshape(tf.matmul(conv_last_, class_w), [-1, hyper.image_h,hyper.image_w])
return classmap