-
Notifications
You must be signed in to change notification settings - Fork 8
/
train_sdclr.py
210 lines (167 loc) · 9.88 KB
/
train_sdclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import os
import numpy as np
import torch
import torch.optim
import torch.utils.data
import torchvision
from torch.utils.data.sampler import SubsetRandomSampler
from utils import *
from eval_cifar import eval
from data.cifar100 import CIFAR100_index
from data.memoboosted_cifar100 import memoboosted_CIFAR100
from data.augmentations import cifar_tfs_train, cifar_tfs_test
from models.sdclr import SDCLR, Mask
from losses.nt_xent import NT_Xent_Loss
parser = argparse.ArgumentParser(description='PyTorch Cifar100-LT Self-supervised Training')
parser.add_argument('experiment', type=str)
parser.add_argument('--save_dir', default='checkpoints', type=str, help='path to save checkpoint')
parser.add_argument('--data_folder', default='', type=str, help='dataset path')
parser.add_argument('--dataset', type=str, default='cifar100', help="dataset-cifar100")
parser.add_argument('--trainSplit', type=str, default='', help="train split")
parser.add_argument("--gpus", type=str, default="0", help="gpu id sequence split by comma")
parser.add_argument('--seed', type=int, default=10, help='random seed')
parser.add_argument('--num_workers', type=int, default=8, help='num workers')
parser.add_argument('--model', default='resnet18', type=str, help='model type')
parser.add_argument('--batch_size', type=int, default=512, help='batch size')
parser.add_argument('--epochs', default=2000, type=int, help='training epochs')
parser.add_argument('--num_class', default=100, type=int, help='num class')
parser.add_argument('--print_freq', default=20, type=int, help='print frequency')
parser.add_argument('--save_freq', default=500, type=int, help='save frequency /epoch')
parser.add_argument('--eval_freq', default=20, type=int, help='eval frequency /epoch')
parser.add_argument('--checkpoint', default='', type=str, help='saving pretrained model')
parser.add_argument('--resume', default=False, type=bool, help='resume training')
parser.add_argument('--lr', default=0.5, type=float, help='optimizer lr')
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--temperature', default=0.2, type=float, help='nt_xent temperature')
parser.add_argument('--bcl', action='store_true', help='boosted contrastive learning')
parser.add_argument('--momentum_loss_beta', type=float, default=0.97)
parser.add_argument('--rand_k', type=int, default=1, help='k in randaugment')
parser.add_argument('--rand_strength', type=int, default=30, help='maximum strength in randaugment(0-30)')
parser.add_argument('--prune_percent', type=float, default=0.9, help="whole prune percentage")
parser.add_argument('--random_prune_percent', type=float, default=0, help="random prune percentage")
def main():
global args
args = parser.parse_args()
# create dir
save_dir = os.path.join(args.save_dir, args.experiment)
if os.path.exists(save_dir) is not True:
os.system("mkdir -p {}".format(save_dir))
# gpu
gpus = list(map(lambda x: torch.device('cuda', x), [int(e) for e in args.gpus.strip().split(",")]))
torch.cuda.set_device(gpus[0])
torch.backends.cudnn.benchmark = True
setup_seed(args.seed)
# init log
log = logger(path=save_dir, log_name="log.txt")
log.info(str(args))
# create model
model = SDCLR(num_class=args.num_class, network=args.model).cuda()
# criterion
criterion = NT_Xent_Loss(temp=args.temperature, average=False)
# data augmentations
tfs_train, tfs_test = cifar_tfs_train, cifar_tfs_test
# loading data
train_idx_list = list(np.load('split/{}'.format(args.trainSplit)))
if args.bcl:
train_datasets = memoboosted_CIFAR100(train_idx_list, args, root=args.data_folder, train=True)
else:
train_datasets = CIFAR100_index(train_idx_list, root=args.data_folder, train=True, transform=tfs_train, download=True)
eval_train_datasets = torchvision.datasets.CIFAR100(root=args.data_folder, train=True, download=True, transform=tfs_test)
eval_test_datasets = torchvision.datasets.CIFAR100(root=args.data_folder, train=False, download=True, transform=tfs_test)
train_loader = torch.utils.data.DataLoader(train_datasets, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True, pin_memory=True)
eval_train_loader = torch.utils.data.DataLoader(eval_train_datasets, batch_size=1000, num_workers=args.num_workers, sampler=SubsetRandomSampler(list(np.load('split/cifar100/cifar100_trainIdxList.npy'))))
eval_test_loader = torch.utils.data.DataLoader(eval_test_datasets, batch_size=1000, shuffle=False, num_workers=args.num_workers, pin_memory=True)
# dataset statistics
class_stat = train_datasets.idxsNumPerClass
dataset_total_num = np.sum(class_stat)
log.info("class distribution in training set is {}".format(class_stat))
# optimizer, training schedule
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=0.9)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: cosine_annealing(step, args.epochs * len(train_loader), 1, 1e-6 / args.lr, warmup_steps=10 * len(train_loader)))
# optionally resume from a checkpoint
if args.resume:
if args.checkpoint == '':
checkpoint = torch.load(os.path.join(save_dir, 'model.pt'), map_location="cuda")
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch'] + 1
optimizer.load_state_dict(checkpoint['optim'])
for i in range((start_epoch - 1) * len(train_loader)):
scheduler.step()
log.info("resume the checkpoint {} from epoch {}".format(args.checkpoint, checkpoint['epoch']))
# initialize momentum loss
shadow = torch.zeros(dataset_total_num).cuda()
momentum_loss = torch.zeros(args.epochs,dataset_total_num).cuda()
# training
for epoch in range(1, args.epochs + 1):
log.info("current lr is {}".format(optimizer.state_dict()['param_groups'][0]['lr']))
shadow, momentum_loss = train_prune(train_loader, model, criterion, optimizer, scheduler, epoch, log, shadow, momentum_loss, args=args)
if args.bcl:
train_datasets.update_momentum_weight(momentum_loss, epoch)
if (epoch+1) % args.eval_freq == 0 or epoch==0:
# linear probing on full dataset
acc_full = eval(eval_train_loader, eval_test_loader, model, epoch, args=args)
log.info("Accuracy fullshot {}".format(acc_full))
if epoch % 2 == 0:
save_checkpoint({'epoch': epoch,'state_dict': model.state_dict(),'optim': optimizer.state_dict(),}, filename=os.path.join(save_dir, 'model.pt'))
if epoch % args.save_freq == 0 and epoch > 0:
save_checkpoint({'epoch': epoch,'state_dict': model.state_dict(),'optim': optimizer.state_dict(),}, filename=os.path.join(save_dir, 'model_{}.pt'.format(epoch)))
def train_prune(train_loader, model, criterion, optimizer, scheduler, epoch, log, shadow=None, momentum_loss=None, args=None):
pruneMask = Mask(model)
prunePercent = args.prune_percent
randomPrunePercent = args.random_prune_percent
magnitudePrunePercent = prunePercent - randomPrunePercent
log.info("current prune percent is {}".format(prunePercent))
if randomPrunePercent > 0:
log.info("random prune percent is {}".format(randomPrunePercent))
losses, data_time_meter, train_time_meter = AverageMeter(), AverageMeter(), AverageMeter()
losses.reset()
end = time.time()
# prune every epoch
pruneMask.magnitudePruning(magnitudePrunePercent, randomPrunePercent)
for i, (inputs, index) in enumerate(train_loader):
data_time = time.time() - end
data_time_meter.update(data_time)
scheduler.step()
inputs = inputs.cuda(non_blocking=True)
inputs_1 = inputs[:, 0, ...]
inputs_2 = inputs[:, 1, ...]
model.train()
optimizer.zero_grad()
# calculate the grad for non-pruned network
with torch.no_grad():
# branch with pruned network
model.backbone.set_prune_flag(True)
features_2_noGrad = model(inputs_2).detach()
model.backbone.set_prune_flag(False)
features_1 = model(inputs_1)
loss = criterion(features_1, features_=features_2_noGrad)
for count in range(inputs.size()[0]):
if epoch>1:
new_average = (1.0 - args.momentum_loss_beta) * loss[count].clone().detach() + args.momentum_loss_beta * shadow[index[count]]
else:
new_average = loss[count].clone().detach()
shadow[index[count]] = new_average
momentum_loss[epoch-1,index[count]] = new_average
loss.mean().backward()
losses.update(float(loss.mean().detach().cpu()), inputs.shape[0])
# calculate the grad for pruned network
features_1_no_grad = features_1.detach()
model.backbone.set_prune_flag(True)
features_2 = model(inputs_2)
loss = criterion(features_1_no_grad, features_=features_2)
loss.mean().backward()
optimizer.step()
train_time = time.time() - end
end = time.time()
train_time_meter.update(train_time)
if i % args.print_freq == 0 or i == len(train_loader) - 1:
log.info('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'data_time: {data_time.val:.2f} ({data_time.avg:.2f})\t'
'train_time: {train_time.val:.2f} ({train_time.avg:.2f})\t'.format(
epoch, i, len(train_loader), loss=losses,
data_time=data_time_meter, train_time=train_time_meter))
return shadow, momentum_loss
if __name__ == '__main__':
main()