-
Notifications
You must be signed in to change notification settings - Fork 1
/
emit.tex
80 lines (64 loc) · 3.15 KB
/
emit.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
%%\title{EMIT}
% Changed by: Chris ISELIN, 27-Jan-1997
% Changed by: Hans Grote, 15-Oct-2002
% Changed by: Ralph Assmann, 02-Sep-2003
\chapter{EMIT: Equilibrium emittances}
\label{chap:emit}
%Fully Coupled Motion and Radiation}
\texttt{EMIT} calculates the equilibrium emittances:
\madbox{
EMIT, DELTAP=real, TOL=real;
}\vspace{5mm}
The attributes for the \texttt{EMIT} command are:
\begin{madlist}
\ttitem{DELTAP} the average energy error. \\
\texttt{EMIT} adjusts the RF frequencies in order to obtain this
average energy error: the revolution frequency $f_0$
is determined for a fictitious particle with constant momentum error
%DELTAP = delta$_\textit{s}$ = delta(\textit{E}) / \textit{p$_s$ c}
$\mathtt{DELTAP} = \delta_s = \delta(E) / p_s c$ travelling along the
design orbit. The RF frequencies are then set to
%\textit{f$_{RF}$ = h f$_0$}.
$f_{RF} = h f_0$.
\ttitem{TOL} The tolerance attribute is for the distinction between
static and dynamic cases: \\
if for the eigenvalues of the one-turn matrix, $|$e\_val\_5$|$ \textless
tol and $|$e\_val\_6$|$ \textless tol, then the longitudinal motion is
not considered, otherwise it is. \\
(Default:~1.000001)
\end{madlist}
If the machine contains at least one RF cavity, and if synchrotron
radiation is enabled with \hyperref[sec:beam]{\texttt{BEAM,
RADIATE=true;}}, the
\texttt{EMIT} command computes the equilibrium emittances and other
electron beam parameters using the method in \cite{chao1979}.
In this calculation the effects of quadrupoles, sextupoles and
octupoles along the closed orbit are also considered. Thin multipoles are
used only if they have a fictitious length \texttt{LRAD} different from zero.
If the machine does not contain any RF cavity, if synchrotron radiation is
turned off (\hyperref[sec:beam]{\texttt{BEAM, RADIATE=false;}}, or if the longitudinal
motion is not stable, \texttt{EMIT} only computes the parameters that
are not related to radiation and does not update the \texttt{BEAM} values.
If synchrotron radiation is enabled (\hyperref[sec:beam]{\texttt{BEAM, RADIATE=true;}},
and the \texttt{DELTAP} attribute is zero, and the longitudinal motion is stable,
\texttt{EMIT} calculates and updates the following values for the \texttt{BEAM} attached
to the current sequence: both geometric and normalized transverse emittances,
longitudinal emittance and beam sizes ($\sigma_E$ and $\sigma_t$),
damping partition numbers, energy loss per turn and synchrotron tune.
\textbf{Example:}
\madxmp{
RFC: RFCAVITY, HARMON..., VOLT=...; \\
\ldots \\
BEAM, ENERGY = 100.0, RADIATE=true; \\
EMIT, DELTAP = 0.01;
}
\textbf{Remark:}\\
This module assumes nearly constant lattice functions
inside elements. This assumption works for many machines, like LEP
%(\href{http://cern.ch/frs/mad-X_examples/emit/LEP/}{see example}),
but it fails when the lattice functions largely vary inside single
elements. In the later case it is advised to slice the elements.
%as shown in the example pertaining to
%\href{http://cern.ch/frs/mad-X_examples/emit/ALBA/}{ALBA}.
% \href{Rogelio HREF=http://consult.cern.ch/xwho/people/69118}{R.Tom\'as}
% \textbf{Last updated:} 03/13/2013 13:47:20