-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelTrainer.py
648 lines (497 loc) · 22.1 KB
/
modelTrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import copy
import numpy as np
import os
from pathlib import Path
import sys
import time
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import models, transforms
from utils.balancedDataset import BalancedDataset
from utils.const import *
from utils.helperFunctions import setSeed, getScores, getSubDirs
from utils.tasks import currentTask
import warnings
warnings.filterwarnings("ignore")
if not sys.warnoptions:
warnings.simplefilter("ignore")
os.environ["PYTHONWARNINGS"] = "ignore"
# ITERABLE PARAMETERS
# Ratio between classes cat and dog
BALANCES = [[50, 50], [40, 60], [30, 70], [20, 80]]
# Models to train
MODEL_NAMES = ["alexnet", "resnet", "vgg"]
# OTHER PARAMETERS
NUM_CLASSES = 2 # Binary Classification
NUM_WORKERS = 0
PIN_MEMORY = True
# Batch size for training (change depending on how much memory you have)
BATCH_SIZE = 128
# Early stopping
NUM_EPOCHS = 500 # Number of epochs to train for
PATIENCE_ES = 25 # Patience for early stopping
DELTA_ES = 0.0001 # Delta for early stopping
# Flag for feature extracting. When False, we finetune the whole model,
# when True we only update the reshaped layer params
FEATURE_EXTRACT = False
LEARNING_RATE = 0.001 # The learning rate of the optimizer
MOMENTUM = 0.9 # The momentum of the optimizer
### HELPER FUNCTIONS ###
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, delta=0, patience=10):
since = time.time()
last_since = time.time()
scores_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_f1 = 0.0
best_score = None
counter = 0
for epoch in range(num_epochs):
print('[💪 EPOCH] {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
epoch_score = None
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
labels_outputs = torch.tensor([]).to(DEVICE, non_blocking=True)
labels_targets = torch.tensor([]).to(DEVICE, non_blocking=True)
# Iterate over data
setSeed()
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(DEVICE, non_blocking=True)
labels = labels.to(DEVICE, non_blocking=True)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward
# Track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
if is_inception and phase == 'train':
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4 * loss2
else:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# Backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# Statistics
running_loss += loss.item() * inputs.size(0)
labels_outputs = torch.cat([labels_outputs, preds], dim=0)
labels_targets = torch.cat([labels_targets, labels], dim=0)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc, epoch_prec, epoch_rec, epoch_f1 = getScores(
labels_targets, labels_outputs, complete=False)
print('[🗃️ {}] Loss: {:.4f} Acc: {:.4f} Pre: {:.4f} Rec: {:.4f} F-Score: {:.4f}'.format(
phase.upper(), epoch_loss, epoch_acc, epoch_prec, epoch_rec, epoch_f1))
time_elapsed = time.time() - last_since
last_since = time.time()
print("\t[🕑] {:.0f}m {:.0f}s".format(
time_elapsed // 60, time_elapsed % 60))
if phase == 'val':
epoch_score = epoch_f1
# Deep copy the model
if epoch_f1 > best_f1:
best_f1 = epoch_f1
best_model_wts = copy.deepcopy(model.state_dict())
# Store scores history
scores_history.append({
"loss": epoch_loss,
"acc": epoch_acc.cpu().numpy(),
"precision": epoch_prec.cpu().numpy(),
"recall": epoch_rec.cpu().numpy(),
"f1": epoch_f1.cpu().numpy()
})
if best_score is None:
best_score = epoch_score
elif epoch_score <= best_score + delta:
counter += 1
print("\t[⚠️ EARLY STOPPING] {}/{}".format(counter, patience))
if counter >= patience:
break
else:
best_score = epoch_score
counter = 0
print()
time_elapsed = time.time() - since
print()
print('[🕑 TRAINING COMPLETE] {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('[🥇 BEST SCORE] F-Score: {:4f}'.format(best_f1))
# load best model weights
model.load_state_dict(best_model_wts)
return model, scores_history
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
model_ft = None
input_size = 0
if model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs, num_classes)
input_size = 224
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
def evaluateModel(model, dataloader):
model.eval()
labelsOutputs = torch.tensor([]).to(DEVICE, non_blocking=True)
for inputs, labels in dataloader:
inputs = inputs.to(DEVICE, non_blocking=True)
labels = labels.to(DEVICE, non_blocking=True)
with torch.set_grad_enabled(False):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
labelsOutputs = torch.cat([labelsOutputs, preds], dim=0)
return labelsOutputs
def evaluateModelF1(model, dataloader):
model.eval()
labelsOutputs = torch.tensor([]).to(DEVICE, non_blocking=True)
labelsTargets = torch.tensor([]).to(DEVICE, non_blocking=True)
for inputs, labels in dataloader:
inputs = inputs.to(DEVICE, non_blocking=True)
labels = labels.to(DEVICE, non_blocking=True)
with torch.set_grad_enabled(False):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
labelsOutputs = torch.cat([labelsOutputs, preds], dim=0)
labelsTargets = torch.cat([labelsTargets, labels], dim=0)
acc, precision, recall, f1 = getScores(
labelsTargets, labelsOutputs, complete=False)
return {
"acc": acc.cpu().numpy(),
"precision": precision.cpu().numpy(),
"recall": recall.cpu().numpy(),
"f1": f1.cpu().numpy()
}
def evaluateModelsOnDataset(datasetFolder, datasetInfo):
modelsEvals = []
# Setup for normalization
dataTransform = transforms.Compose([
transforms.Resize(INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
])
testDataset = BalancedDataset(
datasetFolder, transform=dataTransform, use_cache=True, check_images=False)
setSeed()
testDataLoader = DataLoader(
testDataset, batch_size=64, shuffle=True, num_workers=0, pin_memory=True)
# Evaluate every model
for root, _, fnames in sorted(os.walk(MODELS_DIR, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
try:
modelData = torch.load(path)
except:
continue
modelDataset = modelData["dataset"]
modelName = modelData["model_name"]
modelPercents = "/".join([str(x)
for x in modelData["balance"]])
print()
print("[🧮 EVALUATING] {} - {} {}".format(
modelDataset,
modelName,
modelPercents
))
modelToTest = modelData["model"]
modelToTest = modelToTest.to(DEVICE, non_blocking=True)
scores = evaluateModelF1(modelToTest, testDataLoader)
modelsEvals.append({
"source_dataset": datasetInfo["dataset"],
"target_model": modelName,
"target_dataset": modelDataset,
"target_balancing": modelPercents,
"baseline_f1": scores["f1"]
})
print("\tAcc: {:.4f}".format(scores["acc"]))
print("\tPre: {:.4f}".format(scores["precision"]))
print("\tRec: {:.4f}".format(scores["recall"]))
print("\tF-Score: {:.4f}".format(scores["f1"]))
torch.cuda.empty_cache()
return modelsEvals
### ITERATING MODELS AND BALANCES ###
setSeed()
for dataset_dir in sorted(getSubDirs(DATASETS_DIR)):
for model_name in sorted(MODEL_NAMES):
for balance in sorted(BALANCES):
print(
f'\n\n[🤖 MODEL] {dataset_dir} - {model_name} - {balance}\n\n')
data_dir = os.path.join(DATASETS_DIR, dataset_dir)
current_dir = os.getcwd()
curr_append = os.path.join(os.path.join(
MODELS_DIR, dataset_dir), model_name)
model_save_path = os.path.join(current_dir, curr_append)
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
model_save_name = "{}_{}".format(
model_name, "_".join(str(b) for b in balance))
model_save_path = os.path.join(model_save_path, model_save_name)
if os.path.exists(model_save_path + ".pt"):
print('\t[✅ SKIPPING] ALREADY TRAINED')
continue
# Initialize the model for this run
model_ft, input_size = initialize_model(
model_name, NUM_CLASSES, FEATURE_EXTRACT, use_pretrained=True)
# Data resize and normalization
data_transforms = {
"train": transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
]),
"val": transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
]),
}
# Create training and validation datasets
image_datasets = {x: BalancedDataset(os.path.join(data_dir, x),
transform=data_transforms[x],
balance=balance,
check_images=False,
use_cache=True) for x in ["train", "val"]}
# Check the sizes of the created datasets
for x in ["train", "val"]:
print()
print("[🗃️ {}]".format(x.upper()))
for cls in image_datasets[x].classes:
cls_index = image_datasets[x].class_to_idx[cls]
num_cls = np.count_nonzero(
np.array(image_datasets[x].targets) == cls_index)
print("[🧮 # ELEMENTS] {}: {}".format(cls, num_cls))
# Create training and validation dataloaders
setSeed()
dataloaders_dict = {x: torch.utils.data.DataLoader(
image_datasets[x], batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, pin_memory=PIN_MEMORY) for x in ["train", "val"]}
model_ft = model_ft.to(DEVICE, non_blocking=True)
# Gather the parameters to be optimized/updated in this run. If we are
# finetuning we will be updating all parameters. However, if we are
# doing feature extract method, we will only update the parameters
# that we have just initialized, i.e. the parameters with requires_grad
# is True.
params_to_update = model_ft.parameters()
if FEATURE_EXTRACT:
params_to_update = []
for name, param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(
params_to_update, lr=LEARNING_RATE, momentum=MOMENTUM)
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
# Train and evaluate
setSeed()
model_ft, scores_history = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft,
num_epochs=NUM_EPOCHS, is_inception=False,
delta=DELTA_ES, patience=PATIENCE_ES)
torch.save({
'model': model_ft,
'task': currentTask,
'dataset': dataset_dir,
'learning_rate': LEARNING_RATE,
'momentum': MOMENTUM,
'balance': balance,
'model_name': model_name,
'batch_size': BATCH_SIZE,
'num_epochs': NUM_EPOCHS,
'criterion': criterion,
'optimizer': optimizer_ft,
'scores_history': scores_history,
'delta_es': DELTA_ES,
'patience_es': PATIENCE_ES
}, model_save_path + ".pt")
print("[💾 SAVED]", dataset_dir, model_name,
"/".join(str(b) for b in balance))
### GENERATING PREDICTIONS ###
print("\n\n" + "-" * 50)
print("\n[🧠 GENERATING MODEL PREDICTIONS]")
predictions = []
for dataset in sorted(getSubDirs(DATASETS_DIR)):
print("\n" + "-" * 15)
print("[🗃️ DATASET] {}\n".format(dataset))
datasetDir = os.path.join(DATASETS_DIR, dataset)
testDir = os.path.join(datasetDir, "test")
toTensor = transforms.Compose([
transforms.Resize(INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
])
testDataset = BalancedDataset(
testDir, transform=toTensor, use_cache=False, check_images=False)
testDataLoader = DataLoader(testDataset, batch_size=16, shuffle=False)
for root, _, fnames in sorted(os.walk(MODELS_DIR)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
modelData = torch.load(path)
modelDataset = modelData["dataset"]
modelName = modelData["model_name"]
modelBalance = "/".join(str(x) for x in modelData["balance"])
print("[🎖️ EVALUATING]", modelData["model_name"], modelBalance)
modelToTest = modelData["model"]
modelToTest = modelToTest.to(DEVICE, non_blocking=True)
outputs = evaluateModel(modelToTest, testDataLoader)
for (image, label), output in zip(testDataset.imgs, outputs):
predictions.append(
{
"task": currentTask,
"model": modelData["model_name"],
"model_dataset": modelData["dataset"],
"balance": modelBalance,
"dataset": dataset,
"image": Path(image),
"name": Path(image).name,
"label": label,
"prediction": int(output.cpu().numpy())
}
)
predictionsDF = pd.DataFrame(predictions)
if not os.path.exists(os.path.dirname('/'.join(MODEL_PREDICTIONS_PATH.split('.csv')[0].split('/')[:-1])+'/')):
os.makedirs(os.path.dirname('/'.join(MODEL_PREDICTIONS_PATH.split('.csv')[0].split('/')[:-1])+'/'))
predictionsDF.to_csv(MODEL_PREDICTIONS_PATH)
print("\n\n" + "-" * 50)
print("\n[🧠 MODELS EVALUATION - BASELINE]")
modelsEvals = []
# Evaluate models on test folders
for dataset in sorted(getSubDirs(DATASETS_DIR)):
print("\n" + "-" * 15)
print("[🗃️ TEST DATASET] {}".format(dataset))
datasetDir = os.path.join(DATASETS_DIR, dataset)
testDir = os.path.join(datasetDir, "test")
advDatasetInfo = {
"dataset": dataset,
"math": None,
"attack": None,
"balancing": None,
"model": None,
}
evals = evaluateModelsOnDataset(testDir, advDatasetInfo)
modelsEvals.extend(evals)
modelsEvalsDF = pd.DataFrame(modelsEvals)
if not os.path.exists(os.path.dirname('/'.join(BASELINE_PATH.split('.csv')[0].split('/')[:-1])+'/')):
os.makedirs(os.path.dirname('/'.join(BASELINE_PATH.split('.csv')[0].split('/')[:-1])+'/'))
modelsEvalsDF.to_csv(BASELINE_PATH)
### COMPUTING CLASS SIMILARITY ###
print("\n\n" + "-" * 50)
print("\n[🧠 MODELS EVALUATION - CLASS SIMILARITY]")
# Defining clean pre-trained models (not finetuned)
alexnet = models.alexnet(pretrained=True)
resnet = models.resnet18(pretrained=True)
vgg = models.vgg11_bn(pretrained=True)
models = [alexnet, resnet, vgg]
similarities = []
for model, name in zip(models, MODEL_NAMES):
for dataset in ['bing', 'google']:
print(f'\n[🧮 EVALUATING] {name} - {dataset}')
# Loading test set
datasetDir = os.path.join(DATASETS_DIR, dataset)
testDir = os.path.join(datasetDir, "test")
toTensor = transforms.Compose([
transforms.Resize(INPUT_SIZE),
transforms.ToTensor(),
transforms.Normalize(
NORMALIZATION_PARAMS[0], NORMALIZATION_PARAMS[1])
])
testDataset = BalancedDataset(
testDir, transform=toTensor, use_cache=False, check_images=False)
setSeed()
testDataLoader = DataLoader(
testDataset, batch_size=16, shuffle=False)
model = model.to(DEVICE, non_blocking=True)
layer = model._modules.get('avgpool')
def copy_embeddings(m, i, o):
"""
Copy embeddings from the avgpool layer.
"""
o = o[:, :, 0, 0].detach().cpu().numpy().tolist()
outputs.append(o)
outputs = []
# Attach hook to avgpool layer
_ = layer.register_forward_hook(copy_embeddings)
model.eval()
for X, y in testDataLoader:
X = X.to(DEVICE, non_blocking=True)
_ = model(X)
list_embeddings = [item for sublist in outputs for item in sublist]
embedding_size = len(list_embeddings[0])
embeddings_0 = list_embeddings[:len(list_embeddings)//2]
embeddings_1 = list_embeddings[len(list_embeddings)//2:]
inter = []
intra0 = []
intra1 = []
print(f'\t[⛏️ INTER] ', end='')
for e0 in embeddings_0:
for e1 in embeddings_1:
dist = np.linalg.norm(np.array(e0) - np.array(e1))
inter.append(dist)
inter_dist = round(np.mean(inter)/embedding_size, 3)
print(inter_dist)
print(f'\t[⛏️ INTRA #0] ', end='')
for i, e0_0 in enumerate(embeddings_0):
for j, e0_1 in enumerate(embeddings_0):
if i != j:
dist = np.linalg.norm(np.array(e0_0) - np.array(e0_1))
intra0.append(dist)
intra0_dist = round(np.mean(intra0)/embedding_size, 3)
print(intra0_dist)
print(f'\t[⛏️ INTRA #1] ', end='')
for i, e1_0 in enumerate(embeddings_1):
for j, e1_1 in enumerate(embeddings_1):
if i != j:
dist = np.linalg.norm(np.array(e1_0) - np.array(e1_1))
intra1.append(dist)
intra1_dist = round(np.mean(intra1)/embedding_size, 3)
print(intra1_dist)
similarities.append({
'dataset': dataset,
'model': name,
'inter': inter_dist,
'intra0': intra0_dist,
'intra1': intra1_dist
})
df = pd.DataFrame(similarities)
if not os.path.exists(os.path.dirname('/'.join(SIMILARITY_PATH.split('.csv')[0].split('/')[:-1])+'/')):
os.makedirs(os.path.dirname('/'.join(SIMILARITY_PATH.split('.csv')[0].split('/')[:-1])+'/'))
df.to_csv(SIMILARITY_PATH)