diff --git a/DESCRIPTION b/DESCRIPTION index c68e359..6be9cc6 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: statcheck Title: Extract Statistics from Articles and Recompute P-Values Version: 1.4.0 -Date: 2021-03-17 +Date: 2022-12-09 Authors@R: c( person("Michele B.", "Nuijten", email = "m.b.nuijten@uvt.nl", role = c("aut", "cre")), diff --git a/README.Rmd b/README.Rmd index 591e002..ef5d7db 100644 --- a/README.Rmd +++ b/README.Rmd @@ -13,11 +13,19 @@ knitr::opts_chunk$set( ) ``` +```{r echo=FALSE, results="hide", message=FALSE} +library("badger") +``` + # statcheck -[![CRAN status](https://www.r-pkg.org/badges/version/statcheck)](https://cran.r-project.org/package=statcheck) -[![CRAN_Downloads_Total](http://cranlogs.r-pkg.org/badges/grand-total/statcheck?color=brightgreen)](https://cran.r-project.org/package=statcheck) +```{r, echo = FALSE, results='asis'} +cat( + badge_cran_release("statcheck", "green"), + badge_cran_download("statcheck", "grand-total", "green") +) +``` ## What is statcheck? diff --git a/README.md b/README.md index 180056f..e33495d 100644 --- a/README.md +++ b/README.md @@ -1,15 +1,13 @@ - # statcheck -[![CRAN -status](https://www.r-pkg.org/badges/version/statcheck)](https://cran.r-project.org/package=statcheck) -[![CRAN\_Downloads\_Total](http://cranlogs.r-pkg.org/badges/grand-total/statcheck?color=brightgreen)](https://cran.r-project.org/package=statcheck) +[![](https://www.r-pkg.org/badges/version/statcheck?color=green)](https://cran.r-project.org/package=statcheck) +[![](http://cranlogs.r-pkg.org/badges/grand-total/statcheck?color=green)](https://cran.r-project.org/package=statcheck) ## What is statcheck? @@ -32,9 +30,9 @@ inconsistencies. 3. **Research**: `statcheck` can be used to automatically extract statistical test results from articles that can then be analyzed. You can for instance investigate whether you can predict statistical - inconsistencies (see e.g., [Nuijten et - al., 2017](https://www.collabra.org/article/10.1525/collabra.102/)), - or use it to analyze p-value distributions (see e.g., [Hartgerink et + inconsistencies (see e.g., [Nuijten et al., + 2017](https://www.collabra.org/article/10.1525/collabra.102/)), or + use it to analyze p-value distributions (see e.g., [Hartgerink et al., 2016](https://peerj.com/articles/1935/)). ## How does statcheck work? @@ -44,9 +42,11 @@ The algorithm behind `statcheck` consists of four basic steps: 1. **Convert** pdf and html articles to plain text files. 2. **Search** the text for instances of NHST results. Specifically, `statcheck` can recognize *t*-tests, *F*-tests, correlations, - *z*-tests, \(\chi^2\) -tests, and Q-tests (from meta-analyses) if - they are reported completely (test statistic, degrees of freedom, - and *p*-value) and in APA style. + *z*-tests, + ![\chi^2](https://latex.codecogs.com/png.image?%5Cdpi%7B110%7D&space;%5Cbg_white&space;%5Cchi%5E2 "\chi^2") + -tests, and Q-tests (from meta-analyses) if they are reported + completely (test statistic, degrees of freedom, and *p*-value) and + in APA style. 3. **Recompute** the *p*-value using the reported test statistic and degrees of freedom. 4. **Compare** the reported and recomputed *p*-value. If the reported