diff --git a/articles/ai-services/openai/concepts/models.md b/articles/ai-services/openai/concepts/models.md
index 820e24b5ed..e727beef1c 100644
--- a/articles/ai-services/openai/concepts/models.md
+++ b/articles/ai-services/openai/concepts/models.md
@@ -4,7 +4,7 @@ titleSuffix: Azure OpenAI
description: Learn about the different model capabilities that are available with Azure OpenAI.
ms.service: azure-ai-openai
ms.topic: conceptual
-ms.date: 08/14/2024
+ms.date: 08/28/2024
ms.custom: references_regions, build-2023, build-2023-dataai, refefences_regions
manager: nitinme
author: mrbullwinkle #ChrisHMSFT
@@ -26,24 +26,6 @@ Azure OpenAI Service is powered by a diverse set of models with different capabi
| [Whisper](#whisper-models) | A series of models in preview that can transcribe and translate speech to text. |
| [Text to speech](#text-to-speech-models-preview) (Preview) | A series of models in preview that can synthesize text to speech. |
-## Early access playground (preview)
-
-On August 6, 2024, OpenAI [announced](https://openai.com/index/introducing-structured-outputs-in-the-api/) the latest version of their flagship GPT-4o model version `2024-08-06`. GPT-4o `2024-08-06` has all the capabilities of the previous version as well as:
-
-* An enhanced ability to support complex structured outputs.
-* Max output tokens have been increased from 4,096 to 16,384.
-
-Azure customers can test out GPT-4o `2024-08-06` today in the new AI Studio early access playground (preview).
-
-Unlike the previous early access playground, the AI Studio early access playground (preview) does not require you to have a resource in a specific region.
-
-> [!NOTE]
-> Prompts and completions made through the early access playground (preview) may be processed in any Azure OpenAI region, and are currently subject to a 10 request per minute per Azure subscription limit. This limit may change in the future.
->
-> Azure OpenAI Service abuse monitoring is enabled for all early access playground users even if approved for modification; default content filters are enabled and cannot be modified.
-
-To test out GPT-4o `2024-08-06`, sign-in to the Azure AI early access playground (preview) using this [link](https://aka.ms/oai/docs/earlyaccessplayground).
-
## GPT-4o and GPT-4 Turbo
GPT-4o integrates text and images in a single model, enabling it to handle multiple data types simultaneously. This multimodal approach enhances accuracy and responsiveness in human-computer interactions. GPT-4o matches GPT-4 Turbo in English text and coding tasks while offering superior performance in non-English languages and vision tasks, setting new benchmarks for AI capabilities.
@@ -56,6 +38,7 @@ You need to [create](../how-to/create-resource.md) or use an existing resource i
When your resource is created, you can [deploy](../how-to/create-resource.md#deploy-a-model) the GPT-4o models. If you are performing a programmatic deployment, the **model** names are:
+- `gpt-4o` **Version** `2024-08-06`
- `gpt-4o`, **Version** `2024-05-13`
- `gpt-4o-mini` **Version** `2024-07-18`
@@ -83,8 +66,9 @@ See [model versions](../concepts/model-versions.md) to learn about how Azure Ope
| Model ID | Description | Max Request (tokens) | Training Data (up to) |
| --- | :--- |:--- |:---: |
+|`gpt-4o` (2024-08-06)
**GPT-4o (Omni)** | **Latest large GA model**
- Structured outputs
- Text, image processing
- JSON Mode
- parallel function calling
- Enhanced accuracy and responsiveness
- Parity with English text and coding tasks compared to GPT-4 Turbo with Vision
- Superior performance in non-English languages and in vision tasks |Input: 128,000
Output: 4,096| Oct 2023 |
|`gpt-4o-mini` (2024-07-18)
**GPT-4o mini** | **Latest small GA model**
- Fast, inexpensive, capable model ideal for replacing GPT-3.5 Turbo series models.
- Text, image processing
- JSON Mode
- parallel function calling | Input: 128,000
Output: 16,384 | Oct 2023 |
-|`gpt-4o` (2024-05-13)
**GPT-4o (Omni)** | **Latest large GA model**
- Text, image processing
- JSON Mode
- parallel function calling
- Enhanced accuracy and responsiveness
- Parity with English text and coding tasks compared to GPT-4 Turbo with Vision
- Superior performance in non-English languages and in vision tasks |Input: 128,000
Output: 4,096| Oct 2023 |
+|`gpt-4o` (2024-05-13)
**GPT-4o (Omni)** | Text, image processing
- JSON Mode
- parallel function calling
- Enhanced accuracy and responsiveness
- Parity with English text and coding tasks compared to GPT-4 Turbo with Vision
- Superior performance in non-English languages and in vision tasks |Input: 128,000
Output: 4,096| Oct 2023 |
| `gpt-4` (turbo-2024-04-09)
**GPT-4 Turbo with Vision** | **New GA model**
- Replacement for all previous GPT-4 preview models (`vision-preview`, `1106-Preview`, `0125-Preview`).
- [**Feature availability**](#gpt-4o-and-gpt-4-turbo) is currently different depending on method of input, and deployment type. | Input: 128,000
Output: 4,096 | Dec 2023 |
| `gpt-4` (0125-Preview)*
**GPT-4 Turbo Preview** | **Preview Model**
-Replaces 1106-Preview
- Better code generation performance
- Reduces cases where the model doesn't complete a task
- JSON Mode
- parallel function calling
- reproducible output (preview) | Input: 128,000
Output: 4,096 | Dec 2023 |
| `gpt-4` (vision-preview)
**GPT-4 Turbo with Vision Preview** | **Preview model**
- Accepts text and image input.
- Supports enhancements
- JSON Mode
- parallel function calling
- reproducible output (preview) | Input: 128,000
Output: 4,096 | Apr 2023 |
@@ -188,6 +172,17 @@ For more information on Provisioned deployments, see our [Provisioned guidance](
### Global standard model availability
+`gpt-4o` **Version:** `2024-08-06`
+
+**Supported regions:**
+- eastus
+- eastus2
+- northcentralus
+- southcentralus
+- swedencentral
+- westus
+- westus3
+
`gpt-4o` **Version:** `2024-05-13`
**Supported regions:**
diff --git a/articles/ai-services/openai/how-to/json-mode.md b/articles/ai-services/openai/how-to/json-mode.md
index eba513720d..f609c4ee5c 100644
--- a/articles/ai-services/openai/how-to/json-mode.md
+++ b/articles/ai-services/openai/how-to/json-mode.md
@@ -6,7 +6,7 @@ services: cognitive-services
manager: nitinme
ms.service: azure-ai-openai
ms.topic: how-to
-ms.date: 12/05/2023
+ms.date: 08/29/2024
author: mrbullwinkle
ms.author: mbullwin
recommendations: false
@@ -17,6 +17,9 @@ recommendations: false
JSON mode allows you to set the models response format to return a valid JSON object as part of a chat completion. While generating valid JSON was possible previously, there could be issues with response consistency that would lead to invalid JSON objects being generated.
+> [!NOTE]
+> While JSON mode is still supported, when possible we recommend using [structured outputs](./structured-outputs.md). Like JSON mode structured outputs generates valid JSON, but with the added benefit that you can constrain the model to use a specific JSON schema.
+
## JSON mode support
JSON mode is only currently supported with the following models:
@@ -27,6 +30,8 @@ JSON mode is only currently supported with the following models:
* `gpt-35-turbo` (0125)
* `gpt-4` (1106-Preview)
* `gpt-4` (0125-Preview)
+* `gpt-4o`
+* `gpt-4o-mini`
### API support
@@ -47,7 +52,7 @@ client = AzureOpenAI(
)
response = client.chat.completions.create(
- model="gpt-4-0125-Preview", # Model = should match the deployment name you chose for your 0125-Preview model deployment
+ model="YOUR-MODEL_DEPLOYMENT_NAME", # Model = should match the deployment name you chose for your model deployment
response_format={ "type": "json_object" },
messages=[
{"role": "system", "content": "You are a helpful assistant designed to output JSON."},
diff --git a/articles/ai-services/openai/how-to/structured-outputs.md b/articles/ai-services/openai/how-to/structured-outputs.md
new file mode 100644
index 0000000000..51b2d95cfa
--- /dev/null
+++ b/articles/ai-services/openai/how-to/structured-outputs.md
@@ -0,0 +1,743 @@
+---
+title: 'How to use structured outputs with Azure OpenAI Service'
+titleSuffix: Azure OpenAI
+description: Learn how to improve your model responses with structured outputs
+services: cognitive-services
+manager: nitinme
+ms.service: azure-ai-openai
+ms.topic: how-to
+ms.date: 08/28/2024
+author: mrbullwinkle
+ms.author: mbullwin
+recommendations: false
+---
+
+# Structured outputs
+
+Structured outputs make a model follow a [JSON Schema](https://json-schema.org/overview/what-is-jsonschema) definition that you provide as part of your inference API call. This is in contrast to the older [JSON mode](./json-mode.md) feature, which guaranteed valid JSON would be generated, but was unable to ensure strict adherence to the supplied schema. Structured outputs is recommended for function calling, extracting structured data, and building complex multi-step workflows.
+
+## Supported models
+
+Currently only `gpt-4o` version: `2024-08-06` supports structured outputs.
+
+## API support
+
+Support for structured outputs was first added in API version [`2024-08-01-preview`](https://github.com/Azure/azure-rest-api-specs/blob/main/specification/cognitiveservices/data-plane/AzureOpenAI/inference/preview/2024-08-01-preview/inference.json).
+
+## Getting started
+
+# [Python (Microsoft Entra ID)](#tab/python-secure)
+
+You can use [`Pydantic`](https://docs.pydantic.dev/latest/) to define object schemas in Python. Depending on what version of the [OpenAI](https://pypi.org/project/openai/) and [`Pydantic` libraries](https://pypi.org/project/pydantic/) you're running you may need to upgrade to a newer version. These examples were tested against `openai 1.42.0` and `pydantic 2.8.2`.
+
+```cmd
+pip install openai pydantic --upgrade
+```
+
+If you new to using Microsoft Entra ID for authentication see [How to configure Azure OpenAI Service with Microsoft Entra ID authentication](./managed-identity.md).
+
+```python
+from pydantic import BaseModel
+from openai import AzureOpenAI
+from azure.identity import DefaultAzureCredential, get_bearer_token_provider
+
+token_provider = get_bearer_token_provider(
+ DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
+)
+
+client = AzureOpenAI(
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
+ azure_ad_token_provider=token_provider,
+ api_version="2024-08-01-preview"
+)
+
+
+class CalendarEvent(BaseModel):
+ name: str
+ date: str
+ participants: list[str]
+
+completion = client.beta.chat.completions.parse(
+ model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
+ messages=[
+ {"role": "system", "content": "Extract the event information."},
+ {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
+ ],
+ response_format=CalendarEvent,
+)
+
+event = completion.choices[0].message.parsed
+
+print(event)
+print(completion.model_dump_json(indent=2))
+```
+
+### Output
+
+```json
+name='Science Fair' date='Friday' participants=['Alice', 'Bob']
+{
+ "id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
+ "choices": [
+ {
+ "finish_reason": "stop",
+ "index": 0,
+ "logprobs": null,
+ "message": {
+ "content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
+ "refusal": null,
+ "role": "assistant",
+ "function_call": null,
+ "tool_calls": [],
+ "parsed": {
+ "name": "Science Fair",
+ "date": "Friday",
+ "participants": [
+ "Alice",
+ "Bob"
+ ]
+ }
+ }
+ }
+ ],
+ "created": 1724857389,
+ "model": "gpt-4o-2024-08-06",
+ "object": "chat.completion",
+ "service_tier": null,
+ "system_fingerprint": "fp_1c2eaec9fe",
+ "usage": {
+ "completion_tokens": 27,
+ "prompt_tokens": 32,
+ "total_tokens": 59
+ }
+}
+```
+
+# [Python (key-based auth)](#tab/python)
+
+You can use [`Pydantic`](https://docs.pydantic.dev/latest/) to define object schemas in Python. Depending on what version of the [OpenAI](https://pypi.org/project/openai/) and [`Pydantic` libraries](https://pypi.org/project/pydantic/) you're running you may need to upgrade to a newer version. These examples were tested against `openai 1.42.0` and `pydantic 2.8.2`.
+
+```cmd
+pip install openai pydantic --upgrade
+```
+
+```python
+from pydantic import BaseModel
+from openai import AzureOpenAI
+
+client = AzureOpenAI(
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
+ api_key=os.getenv("AZURE_OPENAI_API_KEY"),
+ api_version="2024-08-01-preview"
+)
+
+
+class CalendarEvent(BaseModel):
+ name: str
+ date: str
+ participants: list[str]
+
+completion = client.beta.chat.completions.parse(
+ model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
+ messages=[
+ {"role": "system", "content": "Extract the event information."},
+ {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
+ ],
+ response_format=CalendarEvent,
+)
+
+event = completion.choices[0].message.parsed
+
+print(event)
+print(completion.model_dump_json(indent=2))
+```
+
+### Output
+
+```json
+name='Science Fair' date='Friday' participants=['Alice', 'Bob']
+{
+ "id": "chatcmpl-A1EUP2fAmL4SeB1lVMinwM7I2vcqG",
+ "choices": [
+ {
+ "finish_reason": "stop",
+ "index": 0,
+ "logprobs": null,
+ "message": {
+ "content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}",
+ "refusal": null,
+ "role": "assistant",
+ "function_call": null,
+ "tool_calls": [],
+ "parsed": {
+ "name": "Science Fair",
+ "date": "Friday",
+ "participants": [
+ "Alice",
+ "Bob"
+ ]
+ }
+ }
+ }
+ ],
+ "created": 1724857389,
+ "model": "gpt-4o-2024-08-06",
+ "object": "chat.completion",
+ "service_tier": null,
+ "system_fingerprint": "fp_1c2eaec9fe",
+ "usage": {
+ "completion_tokens": 27,
+ "prompt_tokens": 32,
+ "total_tokens": 59
+ }
+}
+```
+
+# [REST](#tab/rest)
+
+`response_format` is set to `json_schema` with `strict: true` set.
+
+```bash
+curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-08-01-preview \
+ -H "api-key: $AZURE_OPENAI_API_KEY" \
+ -H "Content-Type: application/json" \
+ -d '{
+ "messages": [
+ {"role": "system", "content": "Extract the event information."},
+ {"role": "user", "content": "Alice and Bob are going to a science fair on Friday."}
+ ],
+ "response_format": {
+ "type": "json_schema",
+ "json_schema": {
+ "name": "CalendarEventResponse",
+ "strict": true,
+ "schema": {
+ "type": "object",
+ "properties": {
+ "name": {
+ "type": "string"
+ },
+ "date": {
+ "type": "string"
+ },
+ "participants": {
+ "type": "array",
+ "items": {
+ "type": "string"
+ }
+ }
+ },
+ "required": [
+ "name",
+ "date",
+ "participants"
+ ],
+ "additionalProperties": false
+ }
+ }
+ }
+ }'
+```
+
+Output:
+
+```json
+{
+ "id": "chatcmpl-A1HKsHAe2hH9MEooYslRn9UmEwsag",
+ "object": "chat.completion",
+ "created": 1724868330,
+ "model": "gpt-4o-2024-08-06",
+ "choices": [
+ {
+ "index": 0,
+ "message": {
+ "role": "assistant",
+ "content": "{\n \"name\": \"Science Fair\",\n \"date\": \"Friday\",\n \"participants\": [\"Alice\", \"Bob\"]\n}"
+ },
+ "logprobs": null,
+ "finish_reason": "stop"
+ }
+ ],
+ "usage": {
+ "prompt_tokens": 33,
+ "completion_tokens": 27,
+ "total_tokens": 60
+ },
+ "system_fingerprint": "fp_1c2eaec9fe"
+}
+
+```
+
+---
+
+## Function calling with structured outputs
+
+Structured Outputs for function calling can be enabled with a single parameter, by supplying `strict: true`.
+
+> [!NOTE]
+> Structured outputs is not supported with parallel function calls. When using structured outputs set `parallel_tool_calls` to `false`.
+
+# [Python (Microsoft Entra ID)](#tab/python-secure)
+
+```python
+from enum import Enum
+from typing import Union
+from pydantic import BaseModel
+import openai
+from openai import AzureOpenAI
+
+client = AzureOpenAI(
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
+ api_key=os.getenv("AZURE_OPENAI_API_KEY"),
+ api_version="2024-08-01-preview"
+)
+
+
+class GetDeliveryDate(BaseModel):
+ order_id: str
+
+tools = [openai.pydantic_function_tool(GetDeliveryDate)]
+
+messages = []
+messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
+messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
+
+response = client.chat.completions.create(
+ model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
+ messages=messages,
+ tools=tools
+)
+
+print(response.choices[0].message.tool_calls[0].function)
+print(response.model_dump_json(indent=2))
+```
+
+# [Python (key-based auth)](#tab/python)
+
+```python
+from enum import Enum
+from typing import Union
+from pydantic import BaseModel
+import openai
+from openai import AzureOpenAI
+
+client = AzureOpenAI(
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
+ api_key=os.getenv("AZURE_OPENAI_API_KEY"),
+ api_version="2024-08-01-preview"
+)
+
+class GetDeliveryDate(BaseModel):
+ order_id: str
+
+tools = [openai.pydantic_function_tool(GetDeliveryDate)]
+
+messages = []
+messages.append({"role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user."})
+messages.append({"role": "user", "content": "Hi, can you tell me the delivery date for my order #12345?"})
+
+response = client.chat.completions.create(
+ model="MODEL_DEPLOYMENT_NAME", # replace with the model deployment name of your gpt-4o 2024-08-06 deployment
+ messages=messages,
+ tools=tools
+)
+
+print(response.choices[0].message.tool_calls[0].function)
+print(response.model_dump_json(indent=2))
+```
+
+# [REST](#tab/rest)
+
+```bash
+curl -X POST https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_MODEL_DEPLOYMENT_NAME/chat/completions?api-version=2024-08-01-preview \
+ -H "api-key: $AZURE_OPENAI_API_KEY" \
+ -H "Content-Type: application/json" \
+ -d '{
+ "messages": [
+ {
+ "role": "system",
+ "content": "You are a helpful assistant. The current date is August 6, 2024. You help users query for the data they are looking for by calling the query function."
+ },
+ {
+ "role": "user",
+ "content": "look up all my orders in may of last year that were fulfilled but not delivered on time"
+ }
+ ],
+ "tools": [
+ {
+ "type": "function",
+ "function": {
+ "name": "query",
+ "description": "Execute a query.",
+ "strict": true,
+ "parameters": {
+ "type": "object",
+ "properties": {
+ "table_name": {
+ "type": "string",
+ "enum": ["orders"]
+ },
+ "columns": {
+ "type": "array",
+ "items": {
+ "type": "string",
+ "enum": [
+ "id",
+ "status",
+ "expected_delivery_date",
+ "delivered_at",
+ "shipped_at",
+ "ordered_at",
+ "canceled_at"
+ ]
+ }
+ },
+ "conditions": {
+ "type": "array",
+ "items": {
+ "type": "object",
+ "properties": {
+ "column": {
+ "type": "string"
+ },
+ "operator": {
+ "type": "string",
+ "enum": ["=", ">", "<", ">=", "<=", "!="]
+ },
+ "value": {
+ "anyOf": [
+ {
+ "type": "string"
+ },
+ {
+ "type": "number"
+ },
+ {
+ "type": "object",
+ "properties": {
+ "column_name": {
+ "type": "string"
+ }
+ },
+ "required": ["column_name"],
+ "additionalProperties": false
+ }
+ ]
+ }
+ },
+ "required": ["column", "operator", "value"],
+ "additionalProperties": false
+ }
+ },
+ "order_by": {
+ "type": "string",
+ "enum": ["asc", "desc"]
+ }
+ },
+ "required": ["table_name", "columns", "conditions", "order_by"],
+ "additionalProperties": false
+ }
+ }
+ }
+ ]
+}'
+```
+
+---
+
+## Supported schemas and limitations
+
+Azure OpenAI structured outputs support the same subset of the [JSON Schema](https://json-schema.org/docs) as OpenAI.
+
+### Supported types
+
+- String
+- Number
+- Boolean
+- Integer
+- Object
+- Array
+- Enum
+- anyOf
+
+> [!NOTE]
+> Root objects cannot be the `anyOf` type.
+
+### All fields must be required
+
+All fields or function parameters must be included as required. In the example below `location`, and `unit` are both specified under `"required": ["location", "unit"]`.
+
+```json
+{
+ "name": "get_weather",
+ "description": "Fetches the weather in the given location",
+ "strict": true,
+ "parameters": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "type": "string",
+ "description": "The location to get the weather for"
+ },
+ "unit": {
+ "type": "string",
+ "description": "The unit to return the temperature in",
+ "enum": ["F", "C"]
+ }
+ },
+ "additionalProperties": false,
+ "required": ["location", "unit"]
+ }
+```
+
+If needed, it's possible to emulate an optional parameter by using a union type with `null`. In this example, this is achieved with the line `"type": ["string", "null"],`.
+
+```json
+{
+ "name": "get_weather",
+ "description": "Fetches the weather in the given location",
+ "strict": true,
+ "parameters": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "type": "string",
+ "description": "The location to get the weather for"
+ },
+ "unit": {
+ "type": ["string", "null"],
+ "description": "The unit to return the temperature in",
+ "enum": ["F", "C"]
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "location", "unit"
+ ]
+ }
+}
+```
+
+### Nesting depth
+
+A schema may have up to 100 object properties total, with up to five levels of nesting
+
+### additionalProperties: false must always be set in objects
+
+This property controls if an object can have additional key value pairs that weren't defined in the JSON Schema. In order to use structured outputs, you must set this value to false.
+
+### Key ordering
+
+Structured outputs are ordered the same as the provided schema. To change the output order, modify the order of the schema that you send as part of your inference request.
+
+### Unsupported type-specific keywords
+
+| Type | Unsupported Keyword
+|---|----|
+| String | minlength
maxLength
pattern
format |
+| Number | minimum
maximum
multipleOf |
+| Objects | patternProperties
unevaluatedProperties
propertyNames
minProperties
maxProperties |
+| Arrays | unevaluatedItems
contains
minContains
maxContains
minItems
maxItems
uniqueItems |
+
+### Nested schemas using anyOf must adhere to the overall JSON Schema subset
+
+Example supported `anyOf` schema:
+
+```json
+{
+ "type": "object",
+ "properties": {
+ "item": {
+ "anyOf": [
+ {
+ "type": "object",
+ "description": "The user object to insert into the database",
+ "properties": {
+ "name": {
+ "type": "string",
+ "description": "The name of the user"
+ },
+ "age": {
+ "type": "number",
+ "description": "The age of the user"
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "name",
+ "age"
+ ]
+ },
+ {
+ "type": "object",
+ "description": "The address object to insert into the database",
+ "properties": {
+ "number": {
+ "type": "string",
+ "description": "The number of the address. Eg. for 123 main st, this would be 123"
+ },
+ "street": {
+ "type": "string",
+ "description": "The street name. Eg. for 123 main st, this would be main st"
+ },
+ "city": {
+ "type": "string",
+ "description": "The city of the address"
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "number",
+ "street",
+ "city"
+ ]
+ }
+ ]
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "item"
+ ]
+}
+```
+
+### Definitions are supported
+
+Supported example:
+
+```json
+{
+ "type": "object",
+ "properties": {
+ "steps": {
+ "type": "array",
+ "items": {
+ "$ref": "#/$defs/step"
+ }
+ },
+ "final_answer": {
+ "type": "string"
+ }
+ },
+ "$defs": {
+ "step": {
+ "type": "object",
+ "properties": {
+ "explanation": {
+ "type": "string"
+ },
+ "output": {
+ "type": "string"
+ }
+ },
+ "required": [
+ "explanation",
+ "output"
+ ],
+ "additionalProperties": false
+ }
+ },
+ "required": [
+ "steps",
+ "final_answer"
+ ],
+ "additionalProperties": false
+}
+```
+
+### Recursive schemas are supported
+
+Example using # for root recursion:
+
+```json
+{
+ "name": "ui",
+ "description": "Dynamically generated UI",
+ "strict": true,
+ "schema": {
+ "type": "object",
+ "properties": {
+ "type": {
+ "type": "string",
+ "description": "The type of the UI component",
+ "enum": ["div", "button", "header", "section", "field", "form"]
+ },
+ "label": {
+ "type": "string",
+ "description": "The label of the UI component, used for buttons or form fields"
+ },
+ "children": {
+ "type": "array",
+ "description": "Nested UI components",
+ "items": {
+ "$ref": "#"
+ }
+ },
+ "attributes": {
+ "type": "array",
+ "description": "Arbitrary attributes for the UI component, suitable for any element",
+ "items": {
+ "type": "object",
+ "properties": {
+ "name": {
+ "type": "string",
+ "description": "The name of the attribute, for example onClick or className"
+ },
+ "value": {
+ "type": "string",
+ "description": "The value of the attribute"
+ }
+ },
+ "additionalProperties": false,
+ "required": ["name", "value"]
+ }
+ }
+ },
+ "required": ["type", "label", "children", "attributes"],
+ "additionalProperties": false
+ }
+ }
+```
+
+Example of explicit recursion:
+
+```json
+{
+ "type": "object",
+ "properties": {
+ "linked_list": {
+ "$ref": "#/$defs/linked_list_node"
+ }
+ },
+ "$defs": {
+ "linked_list_node": {
+ "type": "object",
+ "properties": {
+ "value": {
+ "type": "number"
+ },
+ "next": {
+ "anyOf": [
+ {
+ "$ref": "#/$defs/linked_list_node"
+ },
+ {
+ "type": "null"
+ }
+ ]
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "next",
+ "value"
+ ]
+ }
+ },
+ "additionalProperties": false,
+ "required": [
+ "linked_list"
+ ]
+}
+```
\ No newline at end of file
diff --git a/articles/ai-services/openai/toc.yml b/articles/ai-services/openai/toc.yml
index 674a657c67..ea43cfb305 100644
--- a/articles/ai-services/openai/toc.yml
+++ b/articles/ai-services/openai/toc.yml
@@ -124,6 +124,8 @@ items:
href: ./how-to/json-mode.md
- name: Reproducible output
href: ./how-to/reproducible-output.md
+ - name: Structured outputs
+ href: ./how-to/structured-outputs.md
- name: Work with code
href: ./how-to/work-with-code.md
- name: Use with large datasets