-
Notifications
You must be signed in to change notification settings - Fork 0
/
SignedWadMath.sol
237 lines (204 loc) · 10.5 KB
/
SignedWadMath.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
/// @notice Signed 18 decimal fixed point (wad) arithmetic library.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SignedWadMath.sol)
/// @author Modified from Remco Bloemen (https://xn--2-umb.com/22/exp-ln/index.html)
library SignedWadMath {
/// @dev Will not revert on overflow, only use where overflow is not possible.
function toWadUnsafe(uint256 x) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Multiply x by 1e18.
r := mul(x, 1000000000000000000)
}
}
/// @dev Takes an integer amount of seconds and converts it to a wad amount of days.
/// @dev Will not revert on overflow, only use where overflow is not possible.
/// @dev Not meant for negative second amounts, it assumes x is positive.
function toDaysWadUnsafe(uint256 x) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Multiply x by 1e18 and then divide it by 86400.
r := div(mul(x, 1000000000000000000), 86400)
}
}
/// @dev Takes a wad amount of days and converts it to an integer amount of seconds.
/// @dev Will not revert on overflow, only use where overflow is not possible.
/// @dev Not meant for negative day amounts, it assumes x is positive.
function fromDaysWadUnsafe(int256 x) pure internal returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Multiply x by 86400 and then divide it by 1e18.
r := div(mul(x, 86400), 1000000000000000000)
}
}
/// @dev Will not revert on overflow, only use where overflow is not possible.
function unsafeWadMul(int256 x, int256 y) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Multiply x by y and divide by 1e18.
r := sdiv(mul(x, y), 1000000000000000000)
}
}
/// @dev Will return 0 instead of reverting if y is zero and will
/// not revert on overflow, only use where overflow is not possible.
function unsafeWadDiv(int256 x, int256 y) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Multiply x by 1e18 and divide it by y.
r := sdiv(mul(x, 1000000000000000000), y)
}
}
function wadMul(int256 x, int256 y) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Store x * y in r for now.
r := mul(x, y)
// Equivalent to require(x == 0 || (x * y) / x == y)
if iszero(or(iszero(x), eq(sdiv(r, x), y))) {
revert(0, 0)
}
// Scale the result down by 1e18.
r := sdiv(r, 1000000000000000000)
}
}
function wadDiv(int256 x, int256 y) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Store x * 1e18 in r for now.
r := mul(x, 1000000000000000000)
// Equivalent to require(y != 0 && ((x * 1e18) / 1e18 == x))
if iszero(and(iszero(iszero(y)), eq(sdiv(r, 1000000000000000000), x))) {
revert(0, 0)
}
// Divide r by y.
r := sdiv(r, y)
}
}
/// @dev Will not work with negative bases, only use when x is positive.
function wadPow(int256 x, int256 y) pure internal returns (int256) {
// Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
return wadExp((wadLn(x) * y) / 1e18); // Using ln(x) means x must be greater than 0.
}
function wadExp(int256 x) pure internal returns (int256 r) {
unchecked {
// When the result is < 0.5 we return zero. This happens when
// x <= floor(log(0.5e18) * 1e18) ~ -42e18
if (x <= -42139678854452767551) return 0;
// When the result is > (2**255 - 1) / 1e18 we can not represent it as an
// int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
if (x >= 135305999368893231589) revert("EXP_OVERFLOW");
// x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5**18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
x = x - k * 54916777467707473351141471128;
// k is in the range [-61, 195].
// Evaluate using a (6, 7)-term rational approximation.
// p is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already 2**96 too large.
r := sdiv(p, q)
}
// r should be in the range (0.09, 0.25) * 2**96.
// We now need to multiply r by:
// * the scale factor s = ~6.031367120.
// * the 2**k factor from the range reduction.
// * the 1e18 / 2**96 factor for base conversion.
// We do this all at once, with an intermediate result in 2**213
// basis, so the final right shift is always by a positive amount.
r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
}
}
function wadLn(int256 x) pure internal returns (int256 r) {
unchecked {
require(x > 0, "UNDEFINED");
// We want to convert x from 10**18 fixed point to 2**96 fixed point.
// We do this by multiplying by 2**96 / 10**18. But since
// ln(x * C) = ln(x) + ln(C), we can simply do nothing here
// and add ln(2**96 / 10**18) at the end.
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
r := or(r, shl(2, lt(0xf, shr(r, x))))
r := or(r, shl(1, lt(0x3, shr(r, x))))
r := or(r, lt(0x1, shr(r, x)))
}
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
int256 k = r - 96;
x <<= uint256(159 - k);
x = int256(uint256(x) >> 159);
// Evaluate using a (8, 8)-term rational approximation.
// p is made monic, we will multiply by a scale factor later.
int256 p = x + 3273285459638523848632254066296;
p = ((p * x) >> 96) + 24828157081833163892658089445524;
p = ((p * x) >> 96) + 43456485725739037958740375743393;
p = ((p * x) >> 96) - 11111509109440967052023855526967;
p = ((p * x) >> 96) - 45023709667254063763336534515857;
p = ((p * x) >> 96) - 14706773417378608786704636184526;
p = p * x - (795164235651350426258249787498 << 96);
// We leave p in 2**192 basis so we don't need to scale it back up for the division.
// q is monic by convention.
int256 q = x + 5573035233440673466300451813936;
q = ((q * x) >> 96) + 71694874799317883764090561454958;
q = ((q * x) >> 96) + 283447036172924575727196451306956;
q = ((q * x) >> 96) + 401686690394027663651624208769553;
q = ((q * x) >> 96) + 204048457590392012362485061816622;
q = ((q * x) >> 96) + 31853899698501571402653359427138;
q = ((q * x) >> 96) + 909429971244387300277376558375;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already 2**96 too large.
r := sdiv(p, q)
}
// r is in the range (0, 0.125) * 2**96
// Finalization, we need to:
// * multiply by the scale factor s = 5.549…
// * add ln(2**96 / 10**18)
// * add k * ln(2)
// * multiply by 10**18 / 2**96 = 5**18 >> 78
// mul s * 5e18 * 2**96, base is now 5**18 * 2**192
r *= 1677202110996718588342820967067443963516166;
// add ln(2) * k * 5e18 * 2**192
r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
// add ln(2**96 / 10**18) * 5e18 * 2**192
r += 600920179829731861736702779321621459595472258049074101567377883020018308;
// base conversion: mul 2**18 / 2**192
r >>= 174;
}
}
/// @dev Will return 0 instead of reverting if y is zero.
function unsafeDiv(int256 x, int256 y) pure internal returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y.
r := sdiv(x, y)
}
}
}