-
Notifications
You must be signed in to change notification settings - Fork 1
/
AlonsoMarderModel_generate.py
181 lines (161 loc) · 7.6 KB
/
AlonsoMarderModel_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
os.environ['MKL_NUM_THREADS'] = "1"
from typing import Dict, Union
from AlonsoMarderModel import AlonsoMarderModel
import numpy as np
import matplotlib.pyplot as plt
import time
import pickle
models = {
'a': {
'conductances': {
'g_Na': 1076.392, # uS, transient sodium conductance
'g_CaT': 6.4056, # uS, low-threshold calcium conductance
'g_CaS': 10.048, # uS, slow calcium conductance
'g_A': 8.0384, # uS, transient potassium conductance
'g_KCa': 17.584, # uS, calcium-dependent potassium conductance
'g_Kd': 124.0928, # uS, potassium conductance
'g_H': 0.11304, # uS, hyperpolarization-activated cation conductance
'g_L': 0.17584, # uS, leak conductance
},
'tau_ca': 653.5
},
# add any other models desired here
}
def make_dict_model_from_mcmc_result_list(
row_values: np.ndarray, name: str = 'mcmc') -> Dict[str, Dict[str, Union[Dict[str, float], float]]]:
"""
makes dictionary model from mcmc results
@param row_values: initial row vector from MCMC sampler results
@param name: name of the model
@return: model
"""
return {
name: {
'conductances': {
'g_Na': row_values[1], # uS, transient sodium conductance
'g_CaT': row_values[2], # uS, low-threshold calcium conductance
'g_CaS': row_values[3], # uS, slow calcium conductance
'g_A': row_values[4], # uS, transient potassium conductance
'g_KCa': row_values[5], # uS, calcium-dependent potassium conductance
'g_Kd': row_values[6], # uS, potassium conductance
'g_H': row_values[7], # uS, hyperpolarization-activated cation conductance
'g_L': row_values[8], # uS, leak conductance
},
'tau_ca': row_values[9]
}
}
def plot_model_outputs(
key: str, dict_models: dict, current_injected: float = 0.0, silent: bool = False) -> np.array:
"""
plot all 6 models mV vs ms with its threshold
:param key: model type (a through f)
:param dict_models: model specification (a through f)
:param current_injected: amount of current to inject
:param silent: False by default to show plots
:return: time steps, voltage trace, spike times and threshold and their respective plots
"""
print(f'key : {key}')
time_in_seconds = 6.0
the_model = AlonsoMarderModel(injected_current=current_injected,
conductances=dict_models[key]['conductances'],
tau_ca=dict_models[key]['tau_ca'])
time_steps = np.arange(0.0, time_in_seconds * 1e3, 0.01)
start = time.time()
model_output = the_model.run_simulation(time_steps)
print(f'compute time: {time.time() - start}')
if not silent:
plt.plot(model_output["t"], model_output["y"])
# plt.plot(model_output["spike_times"], model_output["spike_threshold"], "ro")
plt.xlabel('time (ms)')
plt.ylabel('Voltage (mV)')
plt.title(f'model: {key}')
# plt.legend(the_model.get_state_vars_labels())
plt.show()
return model_output
def plot_model_comparison(dict_models: Dict[str, Dict[str, Dict[str, np.ndarray]]]) -> None:
for key, val in dict_models.items():
if key == 'a':
continue
for current_index in np.arange(0, .5, .1):
fig, ((g), (h)) = plt.subplots(2)
fig.suptitle(f'ground truth model (top) and mcmc (bot) - model: {key} current: {float(current_index)}')
g.plot(dict_models['a'][current_index]['t'], dict_models['a'][current_index]['y'], 'tab:orange')
h.plot(dict_models[key][current_index]['t'], dict_models[key][current_index]['y'])
plt.xlabel('samples')
for ax in fig.get_axes():
ax.label_outer()
plt.savefig(f'{current_index}.png')
plt.show()
return None
def convert_dict_of_lists_to_model(
model_dict: Dict[str, Union[np.ndarray, list]]) -> Dict[str, Dict[str, Union[Dict[str, float], float]]]:
all_models = {}
for key, val in model_dict.items():
model = {
key: {
'conductances': {
'g_Na': val[0], # uS, transient sodium conductance
'g_CaT': val[1], # uS, low-threshold calcium conductance
'g_CaS': val[2], # uS, slow calcium conductance
'g_A': val[3], # uS, transient potassium conductance
'g_KCa': val[4], # uS, calcium-dependent potassium conductance
'g_Kd': val[5], # uS, potassium conductance
'g_H': val[6], # uS, hyperpolarization-activated cation conductance
'g_L': val[7], # uS, leak conductance
},
'tau_ca': val[8]
}
}
all_models.update(model)
return all_models
def compute_and_save_models(
models_to_make: Dict[str, Dict[str, Union[Dict[str, float], float]]],
mcmc_model_desired, compute_single_current=False) -> None:
"""
Store all models in a pickle
:return: None
"""
model = {}
model_all = {}
if compute_single_current:
for key in mcmc_model_desired:
if key == 'all':
model_all.update({current_to_plot: plot_model_outputs(key, models_to_make, current_to_plot, False) for
current_to_plot in np.arange(0.0, 0.5, 0.1)})
else:
model.update({float(key): plot_model_outputs(key, models_to_make, float(key), False)})
model_outs = {
'a':
{current_to_plop: plot_model_outputs('a', models_to_make, current_to_plop, False)
for current_to_plop in np.arange(0.0, 0.5, 0.1)},
'mcmc_single_currents': model,
'mcmc_all_current': model_all,
}
else:
model_outs = {
key: {current_to_plop: plot_model_outputs(key, models_to_make, current_to_plop, current_to_plop != 0.0)
for current_to_plop in np.arange(0.0, 0.5, 0.1)}
for key in models_to_make.keys()}
# compare_models(model_outs)
plot_model_comparison(model_outs)
with open('AlonsoMarderModel_generated_data.pkl', 'wb') as filehandle:
pickle.dump(model_outs, filehandle, protocol=pickle.HIGHEST_PROTOCOL)
return None
if __name__ == '__main__':
# plot_model_outputs()
mcmc_model_dict = {
'0.0': [1.36504984e+03, 6.90471282e+00, 1.03010743e+01, 7.52944902e+01, 1.79958197e+01, 1.07390603e+02,
4.15844030e-01, 1.75782751e-01, 7.38407016e+02], # new uniform, 82.89
'0.1': [1510.54096, 7.84354, 10.96749, 54.15303, 16.48460, 139.69044, 0.27945, 0.19041, 607.57802], # 0.00212
'0.2': [1823.57888, 6.95997, 13.63717, 145.06658, 13.45328, 92.24636, 0.35482, 0.18666, 342.65233], # 0.02280
'0.30000000000000004': [1554.45888, 6.53608, 14.23725, 140.65041, 12.56214, 53.72467, 0.21759, 0.14271,
470.50603], # 0.00189
'0.4': [1326.94727, 7.60586, 8.80298, 35.66033, 10.20653, 91.64060, 0.30257, 0.21334, 238.34122], # 0.00439
'all': [1307.70985, 8.85968, 13.41245, 114.53560, 16.89606, 121.59780, 0.28586, 0.12557, 794.03210], # 18.76235
}
mcmc_model = convert_dict_of_lists_to_model(mcmc_model_dict)
models.update(mcmc_model)
# plot_model_comparison(models)
compute_and_save_models(models, mcmc_model_dict, compute_single_current=True)
model_outputs = pickle.load(open('AlonsoMarderModel_generated_data.pkl', 'rb'))