-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathautoPredictSimple.py
230 lines (181 loc) · 6.43 KB
/
autoPredictSimple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#IMPORT
from keras.models import load_model
from PIL import Image
import numpy as np
import time
import matplotlib.pyplot as plt
import cv2
import sys
from visualizer import visualize
from sklearn.metrics import confusion_matrix, plot_confusion_matrix
import itertools
"""
# Classe permettant de réaliser une prédiction sur une nouvelle donnée
"""
def main():
"""
# On definit les chemins d'acces au différentes hyper parametre
"""
modelPath = 'C:\\model.h5'
imagePath = '.\\predict\\test1.jpg'
maskPath = '.\\predict\\mask1.png'
#predict(modelPath, imagePath)
predictNconfusion(modelPath, imagePath, maskPath)
def predictNconfusion(modelPath, imagePath, maskPath):
image = Image.open(imagePath).convert('RGB')
img = image.resize(size=(256, 256))
img = np.asarray(img, dtype=np.float32) / 255.
print("START LOAD")
model = load_model(modelPath, compile=False)
print("END LOAD")
dimension = img.shape
img = img.reshape(1, dimension[0], dimension[1], dimension[2])
prediction = model.predict(img)
res = np.asarray(prediction[0]*100)
res[res >= 0.95] = 1
res[res < 0.95] = 0
np.set_printoptions(threshold=sys.maxsize)
mask = Image.open(maskPath)
mask = mask.resize(size=(256, 256))
maskNp = np.asarray(mask)
#print(maskNp)
#visualize(image, mask)
res = res[:, :, 0]
print(maskNp.shape)
print(res.shape)
print(maskNp.dtype)
print(res.dtype)
res = res.astype(np.uint8)
test = confusion_matrix(maskNp.flatten(), res.flatten())
test = test.astype('float') / test.sum(axis=1)[:, np.newaxis]
#plot_confusion_matrix(clf, maskNp.flatten(), maskNp.flatten())
plt.figure()
cmap = plt.cm.Blues
classes = ['background', 'carrie']
title = 'Confusion matrix'
plt.imshow(test, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(2)
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f'
thresh = test.max() / 2.
for i, j in itertools.product(range(test.shape[0]), range(test.shape[1])):
plt.text(j, i, format(test[i, j], fmt), horizontalalignment="center",
color="white" if test[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
plt.show()
plt.imshow(res)
plt.show()
def predict(modelPath,imagePath):
"""
# Fonction qui permet de convertir une image en array, de charger le modele et de lui injecter notre image pour une prediction
:param modelPath: chemin du modèle au format hdf5
:param imagePath: chemin de l'image pour realiser une prediction
:param imageSize: défini la taille de l'image. IMPORTANT : doit être de la même taille que celle des images
du dataset d'entrainements
:param label: nom de nos 5 classes de sortie
"""
start = time.time()
# Chargement du modele
print("Chargement du modèle :\n")
model = load_model(modelPath)
print("\nModel chargé.")
#Chargement de notre image et traitement
data = []
img = Image.open(imagePath).convert('RGB')
img = img.resize(size=(256, 256))
#img.load()
#img = img.resize(size=imageSize)
img = np.asarray(img, dtype=np.float32) / 255.
#img = np.asarray(img)
#data.append(img)
#data = np.asarray(data)
plt.imshow(img)
plt.show()
#On reshape pour correspondre aux dimensions de notre modele
# Arg1 : correspond au nombre d'image que on injecte
# Arg2 : correspond a la largeur de l'image
# Arg3 : correspond a la hauteur de l'image
# Arg4 : correspond au nombre de canaux de l'image (1 grayscale, 3 couleurs)
#dimension = data[0].shape
dimension = img.shape
print(dimension)
#Reshape pour passer de 3 à 4 dimension pour notre réseau
#data = data.astype(np.float32).reshape(data.shape[0], dimension[0], dimension[1], dimension[2])
img = img.reshape(1, dimension[0], dimension[1], dimension[2])
np.set_printoptions(threshold=sys.maxsize)
#On realise une prediction
prediction = model.predict(img)
res = np.asarray(prediction[0]*100)
print("PREDICTION\n")
print(res)
print(res.shape)
# MULTICLASS
#res = np.argmax(res, axis = 2)
res[res >= 0.95] = 255
res[res <= 0.1] = 0
#print(res)
#print(res.shape)
plt.imshow(res)
plt.show()
'''
pr_mask = model.predict(np.expand_dims(img, axis=0)).squeeze()
# pr_mask.shape == (H, W, C)
pr_mask = np.argmax(pr_mask, axis=2)
# pr_mask.shape == (H, W)
# to count the occurrences, say car is equal to 3 in the pr_mask
num_car_pixels = numpy.count_nonzero(pr_mask == 3)
percent_car_pixels = (num_car_pixels / (H * W)) * 100
'''
'''
test11 = np.asarray(prediction[0], dtype=np.float32)
test22 = np.asarray(prediction[0], dtype=np.uint8)
test1 = np.asarray(prediction[0]*100, dtype=np.float32)
test2 = np.asarray(prediction[0]*100, dtype=np.uint8)
test3 = np.asarray(prediction[0]*255, dtype=np.uint8)
test4 = np.asarray(prediction[0]*255, dtype=np.float32)
cv2.imwrite("predict/predicted.jpg", cv2.cvtColor(prediction[0], cv2.COLOR_RGB2BGR))
cv2.imwrite("predict/test2.jpg", cv2.cvtColor(test2, cv2.COLOR_RGB2BGR))
cv2.imwrite("predict/test3.jpg", cv2.cvtColor(test3, cv2.COLOR_RGB2BGR))
cv2.imwrite("predict/test4.jpg", cv2.cvtColor(test4, cv2.COLOR_RGB2BGR))
plt.imshow(cv2.cvtColor(prediction[0], cv2.COLOR_RGB2BGR))
plt.show()
plt.imshow(cv2.cvtColor(test1, cv2.COLOR_RGB2BGR))
plt.show()
plt.imshow(test2)
plt.show()
plt.imshow(test3)
plt.show()
plt.imshow(test4)
plt.show()
plt.imshow(test11)
plt.show()
plt.imshow(test22)
plt.show()
class_index = np.argmax(prediction, axis=2)
colors = {0: [255, 255, 255]}
colored_image = np.array([colors[x] for x in np.nditer(class_index)],
dtype=np.uint8)
output_image = np.reshape(colored_image, (256, 256, 3))
plt.imshow(output_image)
plt.show()
'''
#On recupere le mot correspondant à l'indice precedent
#word = label[maxPredict]
#pred = prediction[0][maxPredict] * 100.
end = time.time()
#On affiche les prédictions
print()
print('----------')
print(" Prediction :")
print('temps prediction : ' + "{0:.2f}secs".format(end-start))
print('----------')
if __name__ == "__main__":
"""
# MAIN
"""
main()