-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirichlet_likelihood.R
141 lines (109 loc) · 3.38 KB
/
Dirichlet_likelihood.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
multibeta <- function(alphas, log = TRUE) {
lmb <- sum(lgamma(alphas)) - lgamma(sum(alphas))
if (log) lmb else exp(lmb)
}
obs<-c(0.01,0.09,0.10,0.15,0.65)
sum(obs)
obs_bias<-c(0.1,0.20,0.10,0.15,0.65)
obs_bias<-obs_bias/sum(obs_bias)
sum(obs_bias)
obs;round(obs_bias,2)
a0<- c(2,5,10,100)
multibeta(alphas=2*obs)
multibeta(alphas=5*obs)
multibeta(alphas=10*obs)
mul<-function(a0= c(2,5,10), obs) {
beta<-data.frame(a0,beta=0)
for (i in 1:length(a0)) {
beta[i,'beta']<-multibeta(a0[i]*obs,log=TRUE)
}
return(beta)
}
mul(a0,obs)
productx_a<-function(a0,obs,dolog=TRUE) {
alpha<-a0*obs -1
y<-sum(log(obs)*alpha)
if (!dolog) y=exp(y)
y
}
productx_a(a0=2,dolog=T,obs)
productx_a(a0=2,dolog=T,obs)
productx_a(a0=20,dolog=T,obs)
productx_a(a0=100,dolog=T,obs)
library(DirichletReg)
doDir<-function(a0,obs,n=100) {
X1 <- DirichletReg::rdirichlet(n=n, alpha=a0*obs)
head(X1)
DirichletReg::ddirichlet(x=(X1), alpha=a0*obs,log=TRUE, sum.up = T)
}
doDir(a0=2,obs)
doDir(a0=10,obs)
doDir(a0=20,obs)
doDir(a0=50,obs)
doDir(a0=100,obs)
alpha0<-10
# + log_likelihood should all be the same
-multibeta(alphas=alpha0*obs)+productx_a(a0=alpha0,dolog=T,obs)
-mul(alpha0,obs)['beta'] +productx_a(a0=alpha0,dolog=T,obs)
ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs,log=TRUE, sum.up = T)
#negative log likelihood becomes better with increasing factor on alpha0 (and the same observations)
-ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs*0.1,log=TRUE, sum.up = T)
-ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs*0.2,log=TRUE, sum.up = T)
-ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs*0.5,log=TRUE, sum.up = T)
-ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs*1.0,log=TRUE, sum.up = T)
-ddirichlet(x=t(matrix(obs)), alpha=alpha0*obs*10,log=TRUE, sum.up = T)
#### simulation
obs
n=10
bias<-1
a0<-c(3,10,100)
mul<-function(a0, obs,bias=1,n=10) {
for (i in 1:length(a0)) {
if (i==1) {
X<-matrix(rep(obs,n),byrow=T,nrow=n)
X<-data.frame(X)
colnames(X)<-paste0('prey',1:length(obs))
X$alpha<-"The Truth"
X$alpha0<- -9
X$sample<-factor(1:n)
X$nsamp<-n
}
X1 <- DirichletReg::rdirichlet(n=n, alpha=a0[i]*obs*bias)
X1<-data.frame(X1)
colnames(X1)<-paste0('prey',1:length(obs))
X1$alpha<-paste("alpha:",a0[i])
X1$alpha0<- a0[i]
X1$sample<-factor(1:n)
X1$nsamp<-n
X<-rbind(X,X1)
}
return(X)
}
xx<-mul(a0,obs,n=n)
head(xx)
x2<-pivot_longer(xx,cols=prey1:prey5) %>% rename(prey=name)
if (n<=10) {
ggplot(x2, aes(fill=prey, y=value, x=sample)) +
geom_bar(position="stack", stat="identity")+
facet_wrap(vars(alpha),scales = "free")+
theme_minimal()
}
x3<-filter(xx,alpha0>0)
by(x3,list(x3$alpha0),function(x){
alpha0<-x[1,'alpha0']
nsamp<-x[1,'nsamp']
cat(alpha0,nsamp,'\n')
x$alpha<-x$alpha0 <- x$sample <- x$nsamp <-NULL
xx<-as.matrix(x)
#print(round(xx,3))
list(no_process_error=ddirichlet(x=xx,alpha=alpha0*obs,log=TRUE, sum.up = T)/nsamp,
with_process_error=ddirichlet(x=xx,alpha=alpha0*obs_bias,log=TRUE, sum.up = T)/nsamp)
})
X1 <- rdirichlet(100, c(5, 5, 10))
ddirichlet(X1, 1*c(5, 5, 10) ,sum.up = TRUE,log=T)
ddirichlet(X1, 2*c(5, 5, 10) ,sum.up = TRUE,log=T)
ddirichlet(X1, 10*c(5, 5, 10) ,sum.up = TRUE,log=T)
# new alpha deviate from alpha used to create data (process error)
ddirichlet(X1, c(5, 5, 10) ,sum.up = TRUE,log=T)
ddirichlet(X1, c(4, 5, 10) ,sum.up = TRUE,log=T)
ddirichlet(X1, c(1, 5, 10) ,sum.up = TRUE,log=T)