-
Notifications
You must be signed in to change notification settings - Fork 18
/
BinaryTree.c
863 lines (648 loc) · 22.5 KB
/
BinaryTree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
#include "../Headers/BinaryTree.h"
#include "../../../System/Utils.h"
#include "../../../Unit Test/CuTest/CuTest.h"
BinaryTreeNode *binaryTreeInsertR(BinaryTree *tree, BinaryTreeNode *root, void *item);
BinaryTreeNode *binaryTreeDeleteR(BinaryTree *tree, BinaryTreeNode *root, void *item);
void *binaryTreeDeleteWtoFrR(BinaryTree *tree, BinaryTreeNode *parent, BinaryTreeNode *root, void *item);
void binaryTreePreOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *));
void binaryTreeInOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *));
void binaryTreePostOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *));
void clearBinaryTreeR(BinaryTree *tree, BinaryTreeNode *root);
void binaryTreeToArrayR(BinaryTreeNode *root, void **arr, int *index);
/** This function will create a new node and return it's pointer.
*
* Note: this function should only be called from the inside.
*
* @param item the node item pointer
* @return it will return the new allocated node
*/
BinaryTreeNode *createBinaryTreeNode(void *item) {
BinaryTreeNode *newNode = (BinaryTreeNode *) malloc(sizeof(BinaryTreeNode));
if (newNode == NULL) {
fprintf(stderr, FAILED_ALLOCATION_MESSAGE, "new node", "binary tree data structure");
exit(FAILED_ALLOCATION);
}
newNode->key = item;
newNode->right = NULL;
newNode->left = NULL;
return newNode;
}
/** This function will destroy and free the passed node with it's item.
*
* Note: this function should only be called from the inside.
*
* @param node the node pointer
* @param freeFun the item free function pointer
*/
void destroyBinaryTreeNode(BinaryTreeNode *node, void (*freeFun)(void *)) {
freeFun(node->key);
node->right = NULL;
node->left = NULL;
free(node);
}
/** This function will destroy and free the passed node without freeing it's item.
*
* Note: this function should only be called from the inside.
*
* @param node the node pointer
*/
void destroyBinaryTreeNodeWtoFr(BinaryTreeNode *node) {
node->right = NULL;
node->left = NULL;
free(node);
}
/** This function will take a node then it will return the right successor node.
*
* Note: this function should only be called from the inside.
*
* @param node the node pointer
* @return it will return the right successor node pointer
*/
BinaryTreeNode *getRightSuccessorBT(BinaryTreeNode *node) {
BinaryTreeNode *currentNode = node->right;
while (currentNode->left != NULL)
currentNode = currentNode->left;
return currentNode;
}
/** This function will initialize a new binary tree,
* then it will return the allocated tree pointer.
*
* @param freeFun the freeing function pointer, that will be called to free the tree items.
* @param cmp the comparator function pointer, that will be called to compare the tree items.
* @return it will return the new initialized tree pointer
*/
BinaryTree *binaryTreeInitialization(void (*freeFun)(void *), int (*cmp)(const void *, const void *)) {
if (freeFun == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return NULL;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "free function pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
} else if (cmp == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return NULL;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "compare function pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
BinaryTree *tree = (BinaryTree *) malloc(sizeof(BinaryTree));
if (tree == NULL) {
fprintf(stderr, FAILED_ALLOCATION_MESSAGE, "tree", "binary tree data structure");
exit(FAILED_ALLOCATION);
}
tree->root = NULL;
tree->count = 0;
tree->freeFn = freeFun;
tree->cmp = cmp;
return tree;
}
/** This function will insert the passed new item into the tree.
*
* @param tree the tree pointer
* @param item the new item pointer
*/
void binaryTreeInsert(BinaryTree *tree, void *item) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (item == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "item pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
tree->root = binaryTreeInsertR(tree, tree->root, item);
}
/** This function will insert the tree new item recursively.
*
* Note: this function should only be called from the inside.
*
* @param tree the tree pointer
* @param root the current node pointer
* @param item the new item pointer
* @return it will return the current node pointer
*/
BinaryTreeNode *binaryTreeInsertR(BinaryTree *tree, BinaryTreeNode *root, void *item) {
if (root == NULL) {
tree->count++;
root = createBinaryTreeNode(item);
} else if (tree->cmp(item, root->key) > 0 || tree->cmp(item, root->key) == 0)
root->right = binaryTreeInsertR(tree, root->right, item);
else if (tree->cmp(item, root->key) < 0)
root->left = binaryTreeInsertR(tree, root->left, item);
return root;
}
/** This function will take an items array,
* then it will insert all the items in the tree.
*
* @param tree the tree pointer
* @param items the items array pointer
* @param length the length of the items array
*/
void binaryTreeInsertAll(BinaryTree *tree, void **items, int length) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (items == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "items array pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
for (int i = 0; i < length; i++)
binaryTreeInsert(tree, items[i]);
}
/** This function will delete and free the passed item from the tree if found,
* other wise the function will do nothing.
*
* @param tree the tree pointer
* @param item the item pointer
*/
void binaryTreeDelete(BinaryTree *tree, void *item) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (item == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "item pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
} else if (binaryTreeIsEmpty(tree)) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = EMPTY_DATA_STRUCTURE;
return;
#else
fprintf(stderr, EMPTY_DATA_STRUCTURE_MESSAGE, "binary tree data structure");
exit(EMPTY_DATA_STRUCTURE);
#endif
}
tree->root = binaryTreeDeleteR(tree, tree->root, item);
}
/** This function will delete the passed item recursively from the tree.
*
* Note: this function should only be called from the inside.
*
* @param tree the tree pointer
* @param root the current node pointer
* @param item the item pointer
* @return it will return the current node pointer
*/
BinaryTreeNode *binaryTreeDeleteR(BinaryTree *tree, BinaryTreeNode *root, void *item) {
if (root == NULL)
return NULL;
if (tree->cmp(item, root->key) == 0) {
if (root->right == NULL && root->left == NULL) {
destroyBinaryTreeNode(root, tree->freeFn);
root = NULL;
} else if (root->right != NULL && root->left != NULL) {
BinaryTreeNode *rightSuccessor = getRightSuccessorBT(root);
void *tempValue = root->key;
root->key = rightSuccessor->key;
rightSuccessor->key = tempValue;
root->right = binaryTreeDeleteR(tree, root->right, rightSuccessor->key);
return root;
} else {
BinaryTreeNode *newRoot = root->right != NULL ? root->right : root->left;
destroyBinaryTreeNode(root, tree->freeFn);
root = newRoot;
}
tree->count--;
} else if (tree->cmp(item, root->key) > 0)
root->right = binaryTreeDeleteR(tree, root->right, item);
else
root->left = binaryTreeDeleteR(tree, root->left, item);
return root;
}
/** This function will delete the passed item from the tree without freeing it,
* then it will return the deleted item pointer if found, other wise it will return NULL.
*
* @param tree the tree pointer
* @param item the item pointer
* @return it will return the deleted item pointer if found, other wise it will return NULL
*/
void *binaryTreeDeleteWtoFr(BinaryTree *tree, void *item) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return NULL;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (item == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return NULL;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "item pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
} else if (binaryTreeIsEmpty(tree)) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = EMPTY_DATA_STRUCTURE;
return NULL;
#else
fprintf(stderr, EMPTY_DATA_STRUCTURE_MESSAGE, "binary tree data structure");
exit(EMPTY_DATA_STRUCTURE);
#endif
}
return binaryTreeDeleteWtoFrR(tree, NULL, tree->root, item);
}
/** This function will delete the passed item from the tree recursively without freeing it,
* and after that the function will return the passed item pointer if found, other wise it will return NULL.
*
* Note: this function should only be called from the inside.
*
* @param tree the tree pointer
* @param parent the parent node pointer
* @param root the current node pointer
* @param item the item pointer
* @return it will return the deleted item pointer if found, other wise it will return NULL
*/
void *binaryTreeDeleteWtoFrR(BinaryTree *tree, BinaryTreeNode *parent, BinaryTreeNode *root, void *item) {
if (root == NULL)
return NULL;
if (tree->cmp(item, root->key) == 0) {
void *itemToReturn = root->key;
if (root->right == NULL && root->left == NULL) {
if (parent == NULL)
tree->root = NULL;
else {
if (parent->right == root)
parent->right = NULL;
else
parent->left = NULL;
}
destroyBinaryTreeNodeWtoFr(root);
} else if (root->right != NULL && root->left != NULL) {
BinaryTreeNode *rightSuccessor = getRightSuccessorBT(root);
void *tempValue = root->key;
root->key = rightSuccessor->key;
rightSuccessor->key = tempValue;
return binaryTreeDeleteWtoFrR(tree, root, root->right, rightSuccessor->key);
} else {
if (parent == NULL) {
tree->root = root->right != NULL ? root->right : root->left;
} else {
if (parent->right == root)
parent->right = root->right != NULL ? root->right : root->left;
else
parent->left = root->right != NULL ? root->right : root->left;
}
destroyBinaryTreeNodeWtoFr(root);
}
tree->count--;
return itemToReturn;
} else if (tree->cmp(item, root->key) > 0)
return binaryTreeDeleteWtoFrR(tree, root, root->right, item);
else
return binaryTreeDeleteWtoFrR(tree, root, root->left, item);
}
/** This function will check if the passed item is in the tree or not,
* and if it was the function will return one (1), other wise it will return zero (0).
*
* @param tree the tree pointer
* @param item the item pointer
* @return it will return 1 if the item was in the tree, other wise it will return 0
*/
int binaryTreeContains(BinaryTree *tree, void *item) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return -1;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (item == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return -1;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "item pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
BinaryTreeNode *currentNode = tree->root;
while (currentNode != NULL) {
if (tree->cmp(item, currentNode->key) == 0)
break;
else if (tree->cmp(item, currentNode->key) > 0)
currentNode = currentNode->right;
else
currentNode = currentNode->left;
}
return currentNode == NULL ? 0 : 1;
}
/** This function will check for the passed item in the tree,
* and if it found it the function will return the item pointer, other wise it will return NULL.
*
* @param tree the tree pointer
* @param item the item pointer
* @return it will return the item pointer if found, other wise it will return NULL
*/
void *binaryTreeGet(BinaryTree *tree, void *item) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return NULL;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (item == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return NULL;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "item pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
BinaryTreeNode *currentNode = tree->root;
while (currentNode != NULL) {
if (tree->cmp(item, currentNode->key) == 0)
break;
else if (tree->cmp(item, currentNode->key) > 0)
currentNode = currentNode->right;
else
currentNode = currentNode->left;
}
return currentNode == NULL ? NULL : currentNode->key;
}
/** This function will pre order traverse the tree.
*
* Note: you can do any thing else the printing.
*
* @param tree the tree pointer
* @param printFun the printing function pointer
*/
void binaryTreePreOrderTraversal(BinaryTree *tree, void (*printFun)(void *)) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (printFun == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "printing function pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
binaryTreePreOrderTraversalR(tree->root, printFun);
}
/** This function will pre order traverse the tree recursively.
*
* Note: this function should only be called from the inside.
*
* @param root the current node pointer
* @param printFun the printing function pointer
*/
void binaryTreePreOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *)) {
if (root == NULL)
return;
printFun(root->key);
binaryTreePreOrderTraversalR(root->left, printFun);
binaryTreePreOrderTraversalR(root->right, printFun);
}
/** This function will in order traverse the tree.
*
* Note: you can do any thing else the printing.
*
* @param tree the tree pointer
* @param printFun the printing function pointer
*/
void binaryTreeInOrderTraversal(BinaryTree *tree, void (*printFun)(void *)) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (printFun == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "printing function pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
binaryTreeInOrderTraversalR(tree->root, printFun);
}
/** This function will in order traverse the tree recursively.
*
* Note: this function should only be called from the inside.
*
* @param root the current node pointer
* @param printFun the printing function pointer
*/
void binaryTreeInOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *)) {
if (root == NULL)
return;
binaryTreeInOrderTraversalR(root->left, printFun);
printFun(root->key);
binaryTreeInOrderTraversalR(root->right, printFun);
}
/** This function will post order traverse the tree.
*
* Note: you can do any thing else the printing.
*
* @param tree the tree pointer
* @param printFun the printing function pointer
*/
void binaryTreePostOrderTraversal(BinaryTree *tree, void (*printFun)(void *)) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
} else if (printFun == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = INVALID_ARG;
return;
#else
fprintf(stderr, INVALID_ARG_MESSAGE, "printing function pointer", "binary tree data structure");
exit(INVALID_ARG);
#endif
}
binaryTreePostOrderTraversalR(tree->root, printFun);
}
/** This function will post order traverse the tree recursively.
*
* Note: this function should only be called from the inside.
*
* @param root the current node pointer
* @param printFun the printing function pointer
*/
void binaryTreePostOrderTraversalR(BinaryTreeNode *root, void (*printFun)(void *)) {
if (root == NULL)
return;
binaryTreePostOrderTraversalR(root->left, printFun);
binaryTreePostOrderTraversalR(root->right, printFun);
printFun(root->key);
}
/** This function will return the number of nodes in the tree.
*
* @param tree the tree pointer
* @return it will return the number of nodes in the tree
*/
int binaryTreeGetSize(BinaryTree *tree) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return -1;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
}
return tree->count;
}
/** This function will check if the tree is empty or not,
* and if it was the function will return one (1), other wise it will return zero (0).
*
* @param tree the tree pointer
* @return it will return 1 if the tree was empty, other wise it will return 0
*/
int binaryTreeIsEmpty(BinaryTree *tree) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return -1;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
}
return tree->count == 0;
}
/** This function will return a double void pointer array,
* that contains the tree items sorted in ascending order.
*
* @param tree the tree pointer
* @return it will return an array that contains the tree items sorted in ascending order
*/
void **binaryTreeToArray(BinaryTree *tree) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return NULL;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
}
void *arr = (void **) malloc(sizeof(void *) * tree->count);
if (arr == NULL) {
fprintf(stderr, FAILED_ALLOCATION_MESSAGE, "to array", "binary tree data structure");
exit(FAILED_ALLOCATION);
}
int *index = (int *) malloc(sizeof(int));
*index = 0;
binaryTreeToArrayR(tree->root, arr, index);
free(index);
return arr;
}
/** This function will recursively fill the passed array,
* with the tree items sorted in ascending order.
*
* Note: this function should only be called from the inside.
*
* @param root the current node pointer
* @param arr the array pointer
* @param index the current index pointer
*/
void binaryTreeToArrayR(BinaryTreeNode *root, void **arr, int *index) {
if (root == NULL)
return;
binaryTreeToArrayR(root->left, arr, index);
arr[(*index)++] = root->key;
binaryTreeToArrayR(root->right, arr, index);
}
/** This function will destroy and clear the tree nodes, without destroying the tree itself.
*
* @param tree the tree pointer
*/
void clearBinaryTree(BinaryTree *tree) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
}
clearBinaryTreeR(tree, tree->root);
tree->root = NULL;
tree->count = 0;
}
/** This function will recursively destroy and free the tree nodes.
*
* @param tree the tree pointer
* @param root the current node pointer
*/
void clearBinaryTreeR(BinaryTree *tree, BinaryTreeNode *root) {
if (root == NULL)
return;
clearBinaryTreeR(tree, root->left);
clearBinaryTreeR(tree, root->right);
destroyBinaryTreeNode(root, tree->freeFn);
}
/** This function will destroy and free the tree with all it's nodes.
*
* @param tree the tree pointer
*/
void destroyBinaryTree(void *tree) {
if (tree == NULL) {
#ifdef C_DATASTRUCTURES_ERRORSTESTSTRUCT_H
ERROR_TEST->errorCode = NULL_POINTER;
return;
#else
fprintf(stderr, NULL_POINTER_MESSAGE, "tree", "binary tree data structure");
exit(NULL_POINTER);
#endif
}
clearBinaryTree(tree);
free(tree);
}