-
Notifications
You must be signed in to change notification settings - Fork 29
/
entryX.py
237 lines (190 loc) · 9.08 KB
/
entryX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import torch
import torch.nn as nn
from param import args
from src.vilio.modeling_bertX import BertX, BertLayerNorm, GeLU, BertLayer
from src.vilio.modeling_robertaX import RobertaX
from src.vilio.modeling_albertX import AlbertX, AlbertClassificationHead, GeLU_new
from src.vilio.transformers.tokenization_auto import AutoTokenizer
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
### TOKENIZER NOTES:
### In Roberta: [0] == <s> ;;; [1] == <pad> ;;; [2] == </s> ;;; [50264] == <mask>
### In BERT: [CLS] [PAD] [SEP] [MASK]
### In ALBERT: [CLS] <pad> [SEP] [MASK]
### https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json
### https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt
### Segment_ids is the same as token_type_ids
def preprocess_bert(sents, max_seq_len, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for sent in sents:
# Remove double whitespaces
sent = " ".join(str(sent).split())
tokens = tokenizer.tokenize(sent)
if len(tokens) > max_seq_len - 2:
tokens = tokens[:(max_seq_len - 2)]
print("Too long: ", tokens)
tokens = ["[CLS]"] + tokens + ["[SEP]"]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(input_ids)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_len - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_len
assert len(input_mask) == max_seq_len
assert len(segment_ids) == max_seq_len
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids))
return features
def preprocess_roberta(sents, max_seq_len, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for sent in sents:
# Remove double whitespaces & append whitespace for Roberta
sent = " " + " ".join(str(sent).split())
tokens = tokenizer.tokenize(sent)
if len(tokens) > max_seq_len - 2:
tokens = tokens[:(max_seq_len - 2)]
print("Too long: ", tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_ids = [0] + input_ids + [2]
segment_ids = [0] * len(input_ids)
input_mask = [1] * len(input_ids)
# Pad up to the sequence length.
padding_length = max_seq_len - len(input_ids)
if padding_length > 0:
input_ids = input_ids + ([1] * padding_length)
input_mask = input_mask + ([0] * padding_length)
segment_ids = segment_ids + ([0] * padding_length)
assert len(input_ids) == max_seq_len
assert len(input_mask) == max_seq_len
assert len(segment_ids) == max_seq_len
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids))
return features
class ModelX(nn.Module):
def __init__(self, args=args, max_seq_len=128, mode='x', tr_name=args.tr):
"""
mode: lxr
tr_name: roberta-..., bert-..., albert-...
"""
super().__init__()
self.max_seq_len = max_seq_len
self.tr_name = tr_name
### BUILD TOKENIZER ###
self.tokenizer = AutoTokenizer.from_pretrained(tr_name)
### BUILD MODEL ###
if tr_name.startswith("roberta"):
self.model, loading_info = RobertaX.from_pretrained(tr_name, mode=mode, output_loading_info=True, llayers=args.llayers,
xlayers=args.xlayers, rlayers=args.rlayers)
elif tr_name.startswith("bert"):
self.model, loading_info = BertX.from_pretrained(tr_name, mode=mode, output_loading_info=True, llayers=args.llayers,
xlayers=args.xlayers, rlayers=args.rlayers)
elif tr_name.startswith("albert"):
self.model, loading_info = AlbertX.from_pretrained(tr_name, mode=mode, output_loading_info=True, llayers=args.llayers,
xlayers=args.xlayers, rlayers=args.rlayers)
#print("UNEXPECTED: ", loading_info["unexpected_keys"])
#print("MISSING: ", loading_info["missing_keys"])
#print("ERRORS: ", loading_info["error_msgs"])
### CLASSIFICATION HEADS ###
# LXRT Default classifier tends to perform best; For Albert gelu_new outperforms gelu
if self.tr_name.startswith("albert"):
self.classifier = nn.Sequential(
nn.Linear(self.dim, self.dim * 2),
GeLU_new(),
BertLayerNorm(self.dim * 2, eps=1e-12),
nn.Linear(self.dim * 2, 2)
)
else:
self.classifier = nn.Sequential(
nn.Linear(self.dim, self.dim * 2),
GeLU(),
BertLayerNorm(self.dim * 2, eps=1e-12),
nn.Linear(self.dim * 2, 2)
)
self.classifier.apply(self.init_weights)
if args.from_scratch:
print("initializing all the weights")
self.model.apply(self.model.init_weights)
@property
def dim(self):
return self.model.config.hidden_size
def forward(self, sents, visual_feats, visual_attention_mask=None):
if self.tr_name.startswith("roberta"):
train_features = preprocess_roberta(sents, self.max_seq_len, self.tokenizer)
elif self.tr_name.startswith("bert") or self.tr_name.startswith("albert"):
train_features = preprocess_bert(sents, self.max_seq_len, self.tokenizer)
input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()
output = self.model(input_ids, segment_ids, input_mask,
visual_feats=visual_feats,
visual_attention_mask=visual_attention_mask)
output = self.classifier(output)
return output
def save(self, path):
torch.save(self.model.state_dict(),
os.path.join("%s_X.pth" % path))
def load(self, path):
# Load state_dict from snapshot file
print("Load pre-trained model from %s" % path)
state_dict = torch.load("%s" % path) # removed _LXRT.pth
new_state_dict = {}
for key, value in state_dict.items():
if key.startswith("module."):
new_state_dict[key[len("module."):]] = value
elif key.startswith("model."):
new_state_dict[key[6:]] = value
elif key.startswith("roberta."):
new_state_dict[key[8:]] = value
elif key.startswith("albert."):
new_state_dict[key[7:]] = value
else:
new_state_dict[key] = value
state_dict = new_state_dict
# Print out the differences of pre-trained and model weights.
load_keys = set(state_dict.keys())
model_keys = set(self.model.state_dict().keys())
print()
print("Weights in loaded but not in model:")
for key in sorted(load_keys.difference(model_keys)):
print(key)
print()
print("Weights in model but not in loaded:")
for key in sorted(model_keys.difference(load_keys)):
print(key)
print()
# Load weights to model
self.model.load_state_dict(state_dict, strict=False)
def init_weights(self, module):
""" Initialize the weights """
print("REINITING: ", module)
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.model.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def reinit_weights(self, module):
""" Re-init final bert weights for a better model """
# This refers to the LXRTEncoder from modeling
if isinstance(module, nn.ModuleList):
if isinstance(module[-1], BertLayer):
print("Reiniting :", module[-1])
# Reinit that layer:
module[-2:].apply(self.init_weights)