-
Notifications
You must be signed in to change notification settings - Fork 8
/
ndviandendviandsavibatchversionwithgreyscale.py
154 lines (98 loc) · 4.24 KB
/
ndviandendviandsavibatchversionwithgreyscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 12 03:38:28 2019
@author: cosmi
rawpy is an easy-to-use Python wrapper for the LibRaw library.
rawpy works natively with numpy arrays and supports a lot of options,
including direct access to the unprocessed Bayer data
It also contains some extra functionality for finding and repairing hot/dead pixels.
import rawpy.enhance for this
First, install the LibRaw library on your system.
pip install libraw.py
then install rawpy
pip install rawpy
"""
"""
Experimental Vegetation Index Mapping program using DJI Mavic 2 Pro
JPEG 16-bit combo images taken using InfraBlue Filter
Useful for Batch Processing Multiple Images
%(c)-J. Campbell MuonRay Enterprises 2019
This Python script was created using the Spyder Editor
"""
import warnings
warnings.filterwarnings('ignore')
#import imageio
import numpy as np
from matplotlib import pyplot as plt # For image viewing
from matplotlib import colors
from matplotlib import ticker
from matplotlib.colors import LinearSegmentedColormap
#dng reading requires libraw to work
import os
import rawpy
cols1 = ['blue', 'green', 'yellow', 'red']
cols2 = ['gray', 'gray', 'red', 'yellow', 'green']
cols3 = ['gray', 'blue', 'green', 'yellow', 'red']
cols4 = ['black', 'gray', 'blue', 'green', 'yellow', 'red']
def create_colormap(args):
return LinearSegmentedColormap.from_list(name='custom1', colors=cols3)
#colour bar to match grayscale units
def create_colorbar(fig, image):
position = fig.add_axes([0.125, 0.19, 0.2, 0.05])
norm = colors.Normalize(vmin=-1., vmax=1.)
cbar = plt.colorbar(image,
cax=position,
orientation='horizontal',
norm=norm)
cbar.ax.tick_params(labelsize=6)
tick_locator = ticker.MaxNLocator(nbins=3)
cbar.locator = tick_locator
cbar.update_ticks()
cbar.set_label("NDVI", fontsize=10, x=0.5, y=0.5, labelpad=-25)
for infile in os.listdir("./"):
print( "file : " + infile)
if infile[-3:] == "tif" or infile[-3:] == "DNG" :
# print "is tif or DNG (RAW)"
outfile = infile[:-3] + "jpeg"
raw = rawpy.imread(infile)
print( "new filename : " + outfile)
# Extract Red, Green and Blue channels and save as separate files
rgb = raw.postprocess(gamma=(1,1), no_auto_bright=True, output_bps=16)
R = rgb[:,:,0]
G = rgb[:,:,1]
B = rgb[:,:,2]
# Get the red band from the rgb image, and open it as a numpy matrix
#NIR = image[:, :, 0]
#ir = np.asarray(NIR, float)
ir = (R).astype('float')
# Get one of the IR image bands (all bands should be same)
#blue = image[:, :, 2]
#r = np.asarray(blue, float)
r = (B).astype('float')
"For ENDVI"
#g = np.asarray(G, float)
g = (G).astype('float')
#(NIR + Green)
irg = np.add(ir, g)
"For SAVI"
L=0.5;
rplusb = np.add(ir, r)
rminusb = np.subtract(ir, r)
oneplusL = np.add(1, L)
# Create a numpy matrix of zeros to hold the calculated NDVI values for each pixel
# The NDVI image will be the same size as the input image
ndvi = np.zeros(r.size)
ndvi = np.true_divide(np.subtract(irg, 2*r), np.add(irg, 2*r))
#ndvi = np.true_divide(np.subtract(ir, r), np.add(ir, r))
#savi = np.true_divide(np.multiply(rminusb, 1+L), np.add(rplusb, L))
#endvi = np.true_divide(np.subtract(irg, 2*r), np.add(irg, 2*r))
fig, ax = plt.subplots()
image = ax.imshow(ndvi, cmap='Greys')
plt.axis('off')
#Lock or Unlock Key Bar Here for Mapping/Sampling/Showcasing:
#create_colorbar(fig, image)
extent = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
#imageio.imsave(outfile, ndvi)
fig.savefig(outfile, dpi=600, transparent=True, bbox_inches=extent, pad_inches=0)
# plt.show()
# rgb = raw.postprocess()