-
Notifications
You must be signed in to change notification settings - Fork 0
/
Construct Binary Search Tree from Preorder Traversal.py
49 lines (31 loc) · 1.49 KB
/
Construct Binary Search Tree from Preorder Traversal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Return the root node of a binary search tree that matches the given preorder traversal.
# (Recall that a binary search tree is a binary tree where for every node, any descendant of node.left has a value < node.val, and any descendant of node.right has a value > node.val. Also recall that a preorder traversal displays the value of the node first, then traverses node.left, then traverses node.right.)
# It's guaranteed that for the given test cases there is always possible to find a binary search tree with the given requirements.
# Example 1:
# Input: [8,5,1,7,10,12]
# Output: [8,5,10,1,7,null,12]
# Constraints:
# 1 <= preorder.length <= 100
# 1 <= preorder[i] <= 10^8
# The values of preorder are distinct.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def bstFromPreorder(self, preorder: List[int]) -> TreeNode:
def constructBST(preorder, start, end):
if start > end:
return None
node = TreeNode(preorder[start])
i = start
while i <= end:
if preorder[i] > node.val:
break
i = i + 1
node.left = constructBST(preorder, start + 1, i - 1)
node.right = constructBST(preorder, i, end)
return node
return constructBST(preorder,0,len(preorder) - 1)