We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者您好,我在试您的代码时发现您写的下面这个可视化函数最终得不到您展示出来的效果图,请问是什么原因呢? def plot_attention(sentence, Tx=20, Ty=25): """ 可视化Attention层
@param sentence: 待翻译的句子,str类型 @param Tx: 输入句子的长度 @param Ty: 输出句子的长度 """ X = np.array(text_to_int(sentence, source_vocab_to_int)) f = K.function(model.inputs, [model.layers[9].get_output_at(t) for t in range(Ty)]) s0 = np.zeros((1, n_s)) c0 = np.zeros((1, n_s)) out0 = np.zeros((1, len(target_vocab_to_int))) r = f([X.reshape(-1,20), s0, c0, out0]) attention_map = np.zeros((Ty, Tx)) for t in range(Ty): for t_prime in range(Tx): attention_map[t][t_prime] = r[t][0, t_prime, 0] Y = make_prediction(sentence) source_list = sentence.split() target_list = Y.split() f, ax = plt.subplots(figsize=(20,15)) sns.heatmap(attention_map, xticklabels=source_list, yticklabels=target_list, cmap="YlGnBu") ax.set_xticklabels(ax.get_xticklabels(), fontsize=15, rotation=90) ax.set_yticklabels(ax.get_yticklabels(), fontsize=15)
我print了一下attention_map数组的结果,发现数值全部都是0.05.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
作者您好,我在试您的代码时发现您写的下面这个可视化函数最终得不到您展示出来的效果图,请问是什么原因呢?
def plot_attention(sentence, Tx=20, Ty=25):
"""
可视化Attention层
我print了一下attention_map数组的结果,发现数值全部都是0.05.
The text was updated successfully, but these errors were encountered: