forked from qobi/R6RS-AD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
games1.ss
1445 lines (1378 loc) · 46.2 KB
/
games1.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!r6rs
(library
(games1)
(export make-state state-board state-cache-for-x state-cache-for-o state-player
test-lexicon test-grammar test-parse->lf test-semantics
sentence->rule sentences->rules initial-state initial-state? win?
draw? legal-moves *tic-tac-toe* *hexapawn*)
(import (rnrs)
(QobiScheme)
(nondeterministic-scheme)
(maximizing-nondeterministic-promises))
;;; 1. observer learns rules, renders them linguistically to a hearer who plays
;;; 2. learner asks linguistic yes/no questions to disambiguate ambiguous
;;; training data
;;; 3. learner asks robotic yes/no questions to disambiguate ambiguous training
;;; data
;;; needs work:
;;; 1. we cheat throughout and treat "piece of player" as a type rather than as
;;; a token
;;; 2. ambiguity between position (collection) and state for board, cache, row,
;;; column, diagonal, and square
;;; 3. remaining quantifier scoping ambiguity
;;; one simple thing is to rule out every nested in some which suffices for
;;; all of the current examples
;;; currently don't do anythings since the only ambiguity affects piece and
;;; we cheat on the type-token distinction
;;; 4. relative-clause ambiguity
;;; Is this a win for x?
;;; Is this a draw?
;;; Is this an initial state?
;;; Is this a move?
;;; It is awkward to require the player to be explicit for opponent, cache,
;;; piece, distant, close, forward-adjacent, and forward-diagonal.
;;; Characteristics that are part of the bias:
;;; 1. Can have multiple sentences for the outcome predicate instead of
;;; coordinating the when.
;;; 2. Can have multiple sentences for the legal-move generator instead of
;;; coordinating the by.
;;; 3. Draw predicate can refer to win predicate and the legal-move generator.
;;; 4. Initial state only specifies positions of pieces not empty squares.
;;; 5. Assumes turn taking and X goes first.
;;; 6. Every square can have at most one piece.
;;; 7. All games moves involve a sequence of piece moves, which in turn
;;; involve picking up and putting down pices.
;;; 8. There is conservation of matter. Pieces don't appear and disappear.
;;; They have to be somewhere, hence the cache is explicit in the state
;;; representation.
;;; 9. Players can only win when they make a move.
;;; needs work: In the tic-tac-toe and hexapawn legal-move generators you don't
;;; have to say to empty anymore.
(define pretty-print write)
(define-syntax for-effects
(syntax-rules () ((for-effects e ...) (begin (domain (begin e ... #f)) #f))))
(define-record-type state (fields board cache-for-x cache-for-o player))
(define-record-type binding (fields variable thing))
(define-record-type player (fields player))
(define-record-type piece (fields player))
(define-record-type board-square (fields row column))
(define-record-type row (fields row))
(define-record-type column (fields column))
(define-record-type diagonal (fields slope))
(define-record-type cache-square (fields player i))
(define-record-type cache (fields player))
(define-record-type move (fields))
(define *lexicon*
'((d a)
(d some)
(d every)
(d that)
(d no)
(d the)
;;
;; needs work: should constrain allowed types
(n player ((() ())))
(n opponent ((() ()) ((pp) (of))))
(n state ((() ())))
(n row ((() ()) ((pp) (of)) ((pp) (in))))
(n column ((() ()) ((pp) (of)) ((pp) (in))))
(n diagonal ((() ()) ((pp) (of)) ((pp) (in))))
(n cache ((() ())
((pp) (of))
((pp) (in))
((pp) (for))
((pp pp) (for of))
((pp pp) (for in))))
(n square ((() ()) ((pp) (of)) ((pp) (in))))
(n piece ((() ()) ((pp) (of))))
(n move ((() ())))
;;
;; needs work: should constrain allowed types
(a initial (((n) (state))))
(a distant (((n) (row))
((n pp) (row for))
((n pp pp) (row for of))
((n pp pp) (row for in))))
(a close (((n) (row))
((n pp) (row for))
((n pp pp) (row for of))
((n pp pp) (row for in))))
;; lexicalization
(a forward-adjacent (((n) (square)) ((n pp pp) (square for of))))
;; lexicalization
(a forward-diagonal (((n) (square)) ((n pp pp) (square for of))))
(a board (((n) (square)) ((n pp) (square of)) ((n pp) (square in))))
(a cache (((n) (square))
((n pp) (square for))
((n pp pp) (square for of))
((n pp pp) (square for in))))
(a empty (((nbar) (*))))
;;
;; needs work: should constrain allowed types
(p in (((np) (*))))
(p for (((np) (*))))
(p of (((np) (*))))
(p on (((np) (*))))
(p from (((np) (*))))
(p to (((np) (*))))
;; needs work: should only allow present progressive
(p by (((vp) (*))))
;; needs work: should only allow wins/1, draws/1, and has
(p when (((s) (*))))
;;
;; needs work: should constrain allowed types
(v wins ((() ()) ((pp) (when))))
(v draws (((pp) (when))))
(v has (((np) (*))))
(v moves (((pp) (by))))
(v moving (((np pp pp) (* from to))))
;;
(coord then)
(coord and)
;;
(c that)))
(define (an-x category words)
(unless (memq category '(d n a p v coord c nbar np pp vp s r)) (fuck-up))
(when (null? words) (fail))
(amb
(list
(a-member-of
(remove-if-not
(lambda (entry)
(and (eq? (second entry) (first words)) (eq? (first entry) category)))
*lexicon*))
(rest words))
(let loop ((words words))
(let ((result
(case category
((np)
(let* ((result (an-x 'd words))
(d (first result))
(result (an-x 'nbar (second result))))
(list (list 'np d (first result)) (second result))))
((nbar pp vp)
(let* ((result (an-x (case category
((nbar) (amb 'n 'a))
((pp) 'p)
((vp) 'v)
(else (fuck-up)))
words))
(head (first result))
(alternative (a-member-of (third head))))
(let loop ((categories (first alternative))
(prepositions-or-nouns (second alternative))
(words (second result))
(complements '()))
(if (null? categories)
(if (null? prepositions-or-nouns)
(let loop ((x (cons category
(cons head (reverse complements))))
(words words))
(amb (list x words)
(begin (unless (eq? category 'nbar) (fail))
(let ((result (an-x 'r words)))
(loop (list 'nbar x (first result))
(second result))))))
(fuck-up))
(if (null? prepositions-or-nouns)
(fuck-up)
(let ((category (first categories))
(preposition-or-noun
(first prepositions-or-nouns)))
(unless (eq? (or (eq? category 'n) (eq? category 'pp))
(not (eq? preposition-or-noun '*)))
(fuck-up))
(let ((result (an-x category words)))
(unless (or (eq? preposition-or-noun '*)
(case category
((n) (eq? preposition-or-noun
(second (first result))))
((pp)
(eq? preposition-or-noun
(second (second (first result)))))
(else (fuck-up))))
(fail))
(loop (rest categories)
(rest prepositions-or-nouns)
(second result)
(cons (first result) complements)))))))))
((s)
(let* ((result (an-x 'np words))
(np (first result))
(result (an-x 'vp (second result))))
(list (list 's np (first result)) (second result))))
((r)
(let* ((result (an-x 'c words))
(c (first result))
(result (an-x 'vp (second result))))
(list (list 'r c (first result)) (second result))))
(else (fail)))))
(amb result
(let* ((x (first result))
(result (an-x 'coord (second result)))
(coord (first result))
(result (loop (second result))))
(list (list category x coord (first result)) (second result))))))))
(define (a-parse words)
(let ((result (an-x 's words)))
(unless (null? (second result)) (fail))
(first result)))
(define (simplify parse)
(if (memq (first parse) '(d n a p v coord c))
(list (first parse) (second parse))
(cons (first parse) (map simplify (rest parse)))))
(define (head-n nbar)
(unless (eq? (first nbar) 'nbar) (fuck-up))
(cond ((and (= (length nbar) 4)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'coord)
(eq? (first (fourth nbar)) 'nbar))
(fail))
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'r))
(head-n (second nbar)))
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'a)
(eq? (first (third nbar)) 'nbar))
(head-n (third nbar)))
((eq? (first (second nbar)) 'n) (second (second nbar)))
((eq? (first (second nbar)) 'a) (second (third nbar)))
(else (fuck-up))))
(define (head-a? nbar)
(unless (eq? (first nbar) 'nbar) (fuck-up))
(cond ((and (= (length nbar) 4)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'coord)
(eq? (first (fourth nbar)) 'nbar))
(fail))
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'r))
(head-a? (second nbar)))
;; The A of A NBAR is not considered a head.
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'a)
(eq? (first (third nbar)) 'nbar))
(head-a? (third nbar)))
((eq? (first (second nbar)) 'n) #f)
((eq? (first (second nbar)) 'a) #t)
(else (fuck-up))))
(define (head-a nbar)
(unless (eq? (first nbar) 'nbar) (fuck-up))
(cond ((and (= (length nbar) 4)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'coord)
(eq? (first (fourth nbar)) 'nbar))
(fail))
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'nbar)
(eq? (first (third nbar)) 'r))
(head-a (second nbar)))
;; The A of A NBAR is not considered a head.
((and (= (length nbar) 3)
(eq? (first (second nbar)) 'a)
(eq? (first (third nbar)) 'nbar))
(head-a (third nbar)))
((eq? (first (second nbar)) 'n) (fuck-up))
((eq? (first (second nbar)) 'a) (second (second nbar)))
(else (fuck-up))))
(define (np? parse) (and (list? parse) (eq? (first parse) 'np)))
(define (p-vp? parse)
(and (list? parse) (eq? (first parse) 'pp) (eq? (first (third parse)) 'vp)))
(define (p-s? parse)
(and (list? parse) (eq? (first parse) 'pp) (eq? (first (third parse)) 's)))
(define (strip-initial-state lf) (removeq 'initial-state lf))
(define (parse->lf parse)
;; This has a Montagovian flavor.
;; This assumes throughout that
;; lexical ambiguity does not lead to semantic ambiguity and
;; prepositions and complementizers don't contribute semantic content.
;; QR ambiguity intentionally omitted throughout as it is handled elsewhere.
;; There should be coordination raising ambiguity just like QR.
;; needs work: Should generalize throughout to an arbitrary number of
;; complements where any complement can be an NP, P VP, or
;; P S.
(let ((index -1))
(define (gensym)
(set! index (+ index 1))
(string->symbol (string-append "x" (number->string index))))
(let loop ((parse parse))
(if (and (= (length parse) 4) (eq? (first (third parse)) 'coord))
(let ((coord (second (third parse))))
(case (first (second parse))
((nbar)
(let ((nbar1 (loop (second parse))) (nbar2 (loop (fourth parse))))
(lambda (object) `(,coord ,(nbar1 object) ,(nbar2 object)))))
((np) (let ((np1 (loop (second parse))) (np2 (loop (fourth parse))))
(lambda (n) `(,coord ,(np1 n) ,(np2 n)))))
((pp) (loop (list (first parse)
(second (second parse))
(list (first (third (second parse)))
(third (second parse))
(third parse)
(third (fourth parse))))))
((vp) (let ((vp1 (loop (second parse))) (vp2 (loop (fourth parse))))
(lambda (np) `(,coord ,(vp1 np) ,(vp2 np)))))
((s) `(,coord ,(loop (second parse)) ,(loop (fourth parse))))
((r) (loop (list (first parse)
(second (second parse))
(list (first (third (second parse)))
(third (second parse))
(third parse)
(third (fourth parse))))))
(else (fuck-up))))
(case (first parse)
((nbar)
(cond
((eq? (first (second parse)) 'n)
(let ((n (second (second parse)))
(complements (map loop (rest (rest parse)))))
(case (- (length parse) 2)
((0) (lambda (object1) `(,n ,object1)))
((1) (lambda (object1)
;; limits to QR
((first complements)
(lambda (object2)
(strip-initial-state `(,n ,object1 ,object2))))))
((2) (lambda (object1)
;; limits to QR
((first complements)
(lambda (object2)
((second complements)
(lambda (object3)
(strip-initial-state
`(,n ,object1 ,object2 ,object3))))))))
(else (fuck-up)))))
((and (eq? (first (second parse)) 'a)
(eq? (first (third parse)) 'n))
(let ((a-n (string->symbol
(string-append
(symbol->string (second (second parse)))
"-"
(symbol->string (second (third parse))))))
(complements (map loop (rest (rest (rest parse))))))
(case (- (length parse) 3)
((0) (lambda (object1) `(,a-n ,object1)))
((1) (lambda (object1)
;; limits to QR
((first complements)
(lambda (object2)
(strip-initial-state `(,a-n ,object1 ,object2))))))
((2) (lambda (object1)
;; limits to QR
((first complements)
(lambda (object2)
((second complements)
(lambda (object3)
(strip-initial-state
`(,a-n ,object1 ,object2 ,object3))))))))
(else (fuck-up)))))
((eq? (first (second parse)) 'a)
(let ((a (second (second parse))) (nbar (loop (third parse))))
;; limits to QR
(lambda (object) `(and ,(nbar object) (,a ,object)))))
(else (let ((nbar (loop (second parse))) (r (loop (third parse))))
(lambda (object)
;; limits to QR
(r (lambda (n) `(and ,(nbar object) ,(n object)))))))))
((np)
(let ((nbar (loop (third parse))))
(case (second (second parse))
((a)
;; This assumes that you can use "a" only to denote defining
;; occurrences and only in the NP "a player" with no relative
;; clauses, no complements, and no adjectives.
(cond ((and (= (length (third parse)) 2)
(= (length (second (third parse))) 3)
(eq? (first (second (third parse))) 'n)
(eq? (second (second (third parse))) 'player))
(lambda (n) (n 'p)))
(else (fail))))
((some every no the)
;; This assumes that the NP "the initial state" with no
;; relative clauses, no complements, and no non-head
;; adjectives is a defining occurrence.
(if (and (eq? (second (second parse)) 'the)
(= (length (third parse)) 3)
(= (length (second (third parse))) 3)
(eq? (first (second (third parse))) 'a)
(eq? (second (second (third parse))) 'initial)
(= (length (third (third parse))) 3)
(eq? (first (third (third parse))) 'n)
(eq? (second (third (third parse))) 'state))
(lambda (n) (n 'initial-state))
(let ((object (gensym)))
(lambda (n)
(if (eq? (second (second parse)) 'no)
;; "no" can't be a target
`(,(second (second parse))
,object
,(nbar object)
,(n object))
(if (head-a? (third parse))
`(,(second (second parse))
,object
,(nbar object)
,(n object)
,(head-n (third parse))
,(head-a (third parse)))
`(,(second (second parse))
,object
,(nbar object)
,(n object)
,(head-n (third parse)))))))))
((that)
;; This assumes that you can only use "that" to denote
;; anaporic reference and that there can be no relative
;; clauses, no complements, and no non-head adjectives.
(cond
((and (= (length (third parse)) 2)
(= (length (second (third parse))) 3)
(eq? (first (second (third parse))) 'n))
(lambda (n) (n `(anaphor ,(second (second (third parse)))))))
((and (= (length (third parse)) 3)
(= (length (second (third parse))) 3)
(eq? (first (second (third parse))) 'a)
(= (length (third (third parse))) 3)
(eq? (first (third (third parse))) 'n))
(lambda (n)
(n `(anaphor ,(second (third (third parse)))
,(second (second (third parse)))))))
(else (fail))))
(else (fuck-up)))))
((pp) (loop (third parse)))
((vp)
(let ((v (second (second parse)))
(complements (map loop (rest (rest parse)))))
(case (- (length parse) 2)
((0) (lambda (np) (np (lambda (object1) `(,v ,object1)))))
((1) (lambda (np)
(np (lambda (object1)
(cond ((np? (third parse))
((first complements)
(lambda (object2)
(strip-initial-state `(,v ,object1 ,object2)))))
((p-vp? (third parse))
`(define (,v ,object1) ,((first complements) np)))
((p-s? (third parse))
`(define (,v ,object1) ,(first complements)))
(else (fuck-up)))))))
((2) (lambda (np)
(np (lambda (object1)
((first complements)
(lambda (object2)
((second complements)
(lambda (object3)
(strip-initial-state
`(,v ,object1 ,object2 ,object3))))))))))
((3) (lambda (np)
(np
(lambda (object1)
((first complements)
(lambda (object2)
((second complements)
(lambda (object3)
((third complements)
(lambda (object4)
(strip-initial-state
`(,v ,object1 ,object2 ,object3 ,object4))))))))))))
(else (fuck-up)))))
((s) ((loop (third parse)) (loop (second parse))))
((r) (loop (third parse)))
(else (fuck-up)))))))
(define (an-anaphora-resolution lf)
(let ((targets
(remove-duplicates
(let loop ((lf lf))
(append
(if (or (memq lf '(p))
;; "no" can't be a target
(and (list? lf) (memq (first lf) '(some every the))))
(list lf)
'())
(if (list? lf) (map-reduce append '() loop lf) '()))))))
(let loop ((lf lf))
(if (list? lf)
(if (eq? (first lf) 'anaphor)
(let ((target
(a-member-of
(remove-if-not
(lambda (target)
(or (and (= (length lf) 2)
(eq? (second lf) 'player)
(eq? target 'p))
(and (= (length lf) 2)
(list? target)
(= (length target) 5)
(eq? (second lf) (fifth target)))
(and (= (length lf) 3)
(list? target)
(= (length target) 6)
(eq? (second lf) (fifth target))
(eq? (third lf) (sixth target)))))
targets))))
(if (symbol? target) target (second target)))
(map loop lf))
lf))))
(define (declarative-sentence lf)
(if (and (list? lf) (not (eq? (first lf) 'define)))
`(define (initial-state) ,lf)
lf))
(define (variables-in lf)
(remove-duplicates
(let loop ((lf lf))
;; "no" can't be raised
(append (if (and (list? lf) (memq (first lf) '(some every the)))
(list (second lf))
'())
(if (list? lf) (map-reduce append '() loop lf) '())))))
(define (quantifier-of x lf)
(first
(let loop ((lf lf))
(append (if (and (list? lf)
;; "no" can't be raised
(memq (first lf) '(some every the))
(eq? (second lf) x))
(list lf)
'())
(if (list? lf) (map-reduce append '() loop lf) '())))))
(define (remove-quantifier-of x lf)
(let loop ((lf lf))
(if (list? lf)
;; "no" can't be raised
(if (and (memq (first lf) '(some every the)) (eq? (second lf) x))
(fourth lf)
(cons (first lf) (map loop (rest lf))))
lf)))
(define (raise-quantifier x lf)
(let ((q (quantifier-of x lf)))
(list (first q)
(second q)
(third q)
(remove-quantifier-of x lf))))
(define (well-formed-term? lf xs) (memq lf xs))
(define (well-formed-formula? lf xs)
(or
(and (list? lf)
(= (length lf) 3)
(memq (first lf) '(then and))
(well-formed-formula? (second lf) xs)
(well-formed-formula? (third lf) xs))
(and (list? lf)
(= (length lf) 4)
(memq (first lf) '(some every no the))
(symbol? (second lf))
(well-formed-formula? (third lf) (cons (second lf) xs))
(well-formed-formula? (fourth lf) (cons (second lf) xs)))
(and
(list? lf)
(or (and (= (length lf) 2)
(memq (first lf)
'(player
row
column
diagonal
cache
square
piece
move
board-square
cache-square
empty
wins)))
(and (= (length lf) 3)
(memq (first lf)
'(opponent
cache
square
piece
distant-row
close-row
cache-square
has)))
(and (= (length lf) 4)
(memq (first lf)
'(forward-adjacent-square forward-diagonal-square)))
(and (= (length lf) 5)
(memq (first lf) '(moving))))
(every (lambda (lf) (well-formed-term? lf xs)) (rest lf)))))
(define (well-formed-definition? lf)
(and (list? lf)
(= (length lf) 3)
(eq? (first lf) 'define)
(or (equal? (second lf) '(initial-state))
(equal? (second lf) '(wins p))
(equal? (second lf) '(draws p))
(equal? (second lf) '(moves p)))
(well-formed-formula? (third lf) (rest (second lf)))))
(define (free-in? x lf)
(if (list? lf)
(if (memq (first lf) '(some every no the))
(and (not (eq? x (second lf)))
(or (free-in? x (third lf))
(free-in? x (fourth lf))))
(some (lambda (lf) (free-in? x lf)) (rest lf)))
(eq? x lf)))
(define (before? x1 x2 lf) (free-in? x1 (third (quantifier-of x2 lf))))
(define (a-split-of l)
(let loop ((x '()) (y l))
(if (null? y)
(list x y)
(amb (list x y) (loop (append x (list (first y))) (rest y))))))
(define (an-ordered-permutation-of < l)
(if (null? l)
l
(let ((split (a-split-of (an-ordered-permutation-of < (rest l)))))
(when (or (some (lambda (x) (< (first l) x)) (first split))
(some (lambda (x) (< x (first l))) (second split)))
(fail))
(append (first split) (cons (first l) (second split))))))
(define (a-quantifier-scoping lf)
(let* ((definiens (second lf))
(lf (third lf))
(xs (variables-in lf))
(before?
(let ((lf (let loop ((xs xs) (lf lf))
(if (null? xs)
lf
(loop (rest xs) (raise-quantifier (first xs) lf))))))
(lambda (x1 x2) (before? x1 x2 lf))))
(lf `(define ,definiens
,(let loop ((xs (reverse (an-ordered-permutation-of before? xs)))
(lf lf))
(if (null? xs)
lf
(loop (rest xs) (raise-quantifier (first xs) lf)))))))
(unless (well-formed-definition? lf) (fail))
lf))
(define (board-ref state board-square)
(force-nondeterministic-promise
(matrix-ref (state-board state)
(board-square-row board-square)
(board-square-column board-square))))
(define (cache-ref state cache-square)
(force-nondeterministic-promise
(vector-ref ((case (cache-square-player cache-square)
((x) state-cache-for-x)
((o) state-cache-for-o)
(else (fuck-up)))
state)
(cache-square-i cache-square))))
(define (vector-replace v i x)
(list->vector (list-replace (vector->list v) i x)))
(define (matrix-replace m i j x)
(vector-replace m i (vector-replace (vector-ref m i) j x)))
(define (board-replace state board-square player)
(matrix-replace (state-board state)
(board-square-row board-square)
(board-square-column board-square)
player))
(define (cache-replace state cache-square player)
(vector-replace ((case (cache-square-player cache-square)
((x) state-cache-for-x)
((o) state-cache-for-o)
(else (fuck-up)))
state)
(cache-square-i cache-square)
player))
(define (turn state)
(make-state (state-board state)
(state-cache-for-x state)
(state-cache-for-o state)
(case (state-player state)
((x) 'o)
((o) 'x)
(else (fuck-up)))))
(define (interpret lf kind lfs state)
;; We can't give type errors for nouns. We can but don't give type errors for
;; adjectives and verbs.
(let ((things
(append (list (make-player 'x)
(make-player 'o)
(make-piece 'x)
(make-piece 'o)
(make-board-square 0 0)
(make-board-square 0 1)
(make-board-square 0 2)
(make-board-square 1 0)
(make-board-square 1 1)
(make-board-square 1 2)
(make-board-square 2 0)
(make-board-square 2 1)
(make-board-square 2 2)
(make-row 0)
(make-row 1)
(make-row 2)
(make-column 0)
(make-column 1)
(make-column 2)
(make-diagonal 1)
(make-diagonal -1)
(make-cache-square 'x 0)
(make-cache-square 'x 1)
(make-cache-square 'x 2)
(make-cache-square 'x 3)
(make-cache-square 'x 4)
(make-cache-square 'o 0)
(make-cache-square 'o 1)
(make-cache-square 'o 2)
(make-cache-square 'o 3)
(make-cache-square 'o 4)
(make-cache 'x)
(make-cache 'o))
;; For now, we just reify the presence or absence of moves, not
;; the moves themselves.
(if (and (eq? kind 'predicate)
(not (null? (legal-moves lfs state))))
(list (make-move))
'()))))
(define (predicate lf bindings state)
(define (lookup t)
(let ((binding
(find-if (lambda (binding) (eq? t (binding-variable binding)))
bindings)))
(unless binding (fuck-up))
(binding-thing binding)))
(case (first lf)
((then) (fuck-up))
((and)
(and (predicate (second lf) bindings state)
(predicate (third lf) bindings state)))
((some)
(some (lambda (thing)
(and (predicate (third lf)
(cons (make-binding (second lf) thing) bindings)
state)
(predicate (fourth lf)
(cons (make-binding (second lf) thing) bindings)
state)))
things))
((every)
(every
(lambda (thing)
(or (not (predicate (third lf)
(cons (make-binding (second lf) thing) bindings)
state))
(predicate (fourth lf)
(cons (make-binding (second lf) thing) bindings)
state)))
things))
((no)
(not
(some (lambda (thing)
(and (predicate (third lf)
(cons (make-binding (second lf) thing) bindings)
state)
(predicate (fourth lf)
(cons (make-binding (second lf) thing) bindings)
state)))
things)))
((the)
(unless (one (lambda (thing)
(predicate (third lf)
(cons (make-binding (second lf) thing) bindings)
state))
things)
(fuck-up))
(predicate
(fourth lf)
(cons (make-binding
(second lf)
(find-if (lambda (thing)
(predicate (third lf)
(cons (make-binding (second lf) thing)
bindings)
state))
things))
bindings)
state))
;; 1
((player) (player? (lookup (second lf))))
((row) (row? (lookup (second lf))))
((column) (column? (lookup (second lf))))
((diagonal) (diagonal? (lookup (second lf))))
((board-square) (board-square? (lookup (second lf))))
((empty)
;; Could generalize to empty rows, columns, diagonals, cache (for a
;; player), and board.
(or (and (board-square? (lookup (second lf)))
(eq? (board-ref state (lookup (second lf))) #f))
(and (cache-square? (lookup (second lf)))
(eq? (cache-ref state (lookup (second lf))) #f))))
;; needs work: This screws up if it is used in the second argument to
;; "then".
((move) (move? (lookup (second lf))))
((wins)
(and (player? (lookup (second lf)))
(win? lfs
(make-state (state-board state)
(state-cache-for-x state)
(state-cache-for-o state)
(case (player-player (lookup (second lf)))
((x) 'o)
((o) 'x)
(else (fuck-up)))))))
;; 1 or 2
((cache)
(case (length lf)
((2) (cache? (lookup (second lf))))
((3) (and (cache? (lookup (second lf)))
(player? (lookup (third lf)))
(eq? (cache-player (lookup (second lf)))
(player-player (lookup (third lf))))))
(else (fuck-up))))
((square)
(case (length lf)
((2)
(or (board-square? (lookup (second lf)))
(cache-square? (lookup (second lf)))))
((3)
(or
(and (board-square? (lookup (second lf)))
(or (and (row? (lookup (third lf)))
(= (board-square-row (lookup (second lf)))
(row-row (lookup (third lf)))))
(and (column? (lookup (third lf)))
(= (board-square-column (lookup (second lf)))
(column-column (lookup (third lf)))))
(and (diagonal? (lookup (third lf)))
(or (and (= (diagonal-slope (lookup (third lf))) 1)
(= (board-square-row (lookup (second lf)))
(board-square-column (lookup (second lf)))))
(and (= (diagonal-slope (lookup (third lf))) -1)
(= (board-square-row (lookup (second lf)))
(- 2 (board-square-column
(lookup (second lf))))))))))
(and (cache-square? (lookup (second lf)))
(cache? (lookup (third lf)))
(eq? (cache-square-player (lookup (second lf)))
(cache-player (lookup (third lf)))))))
(else (fuck-up))))
((piece)
(case (length lf)
((2) (piece? (lookup (second lf))))
((3) (and (piece? (lookup (second lf)))
(player? (lookup (third lf)))
(eq? (piece-player (lookup (second lf)))
(player-player (lookup (third lf))))))
(else (fuck-up))))
((cache-square)
(case (length lf)
((2) (cache-square? (lookup (second lf))))
((3) (and (cache-square? (lookup (second lf)))
(player? (lookup (third lf)))
(eq? (cache-square-player (lookup (second lf)))
(player-player (lookup (third lf))))))
(else (fuck-up))))
;; 2
((opponent)
(and (player? (lookup (second lf)))
(player? (lookup (third lf)))
(not (eq? (player-player (lookup (second lf)))
(player-player (lookup (third lf)))))))
((distant-row)
(and (row? (lookup (second lf)))
(player? (lookup (third lf)))
(or (and (eq? (player-player (lookup (third lf))) 'x)
(= (row-row (lookup (second lf))) 2))
(and (eq? (player-player (lookup (third lf))) 'o)
(= (row-row (lookup (second lf))) 0)))))
((close-row)
(and (row? (lookup (second lf)))
(player? (lookup (third lf)))
(or (and (eq? (player-player (lookup (third lf))) 'x)
(= (row-row (lookup (second lf))) 0))
(and (eq? (player-player (lookup (third lf))) 'o)
(= (row-row (lookup (second lf))) 2)))))
((has)
(or (and (board-square? (lookup (second lf)))
(piece? (lookup (third lf)))
(eq? (board-ref state (lookup (second lf)))
(piece-player (lookup (third lf)))))
(and (cache-square? (lookup (second lf)))
(piece? (lookup (third lf)))
(eq? (cache-ref state (lookup (second lf)))
(piece-player (lookup (third lf)))))
(and (player? (lookup (second lf)))
(move? (lookup (third lf)))
(eq? (player-player (lookup (second lf)))
(state-player state)))))
;; 3
((forward-adjacent-square)
(and (board-square? (lookup (second lf)))
(player? (lookup (third lf)))
(board-square? (lookup (fourth lf)))
(= (board-square-column (lookup (second lf)))
(board-square-column (lookup (fourth lf))))
(= (board-square-row (lookup (second lf)))
(+ (case (player-player (lookup (third lf)))
((x) 1)
((o) -1)
(else (fuck-up)))
(board-square-row (lookup (fourth lf)))))))
((forward-diagonal-square)
(and (board-square? (lookup (second lf)))
(player? (lookup (third lf)))
(board-square? (lookup (fourth lf)))
(or (= (board-square-column (lookup (second lf)))
(+ (board-square-column (lookup (fourth lf))) 1))
(= (board-square-column (lookup (second lf)))
(- (board-square-column (lookup (fourth lf))) 1)))
(= (board-square-row (lookup (second lf)))
(+ (case (player-player (lookup (third lf)))
((x) 1)
((o) -1)
(else (fuck-up)))
(board-square-row (lookup (fourth lf)))))))
;; 4
((moving) (fuck-up))
(else (fuck-up))))
(define (function lf bindings state)
(define (lookup t)
(let ((binding
(find-if (lambda (binding) (eq? t (binding-variable binding)))
bindings)))
(unless binding (fuck-up))
(binding-thing binding)))
(case (first lf)
((then)
(map-reduce append
'()
(lambda (state) (function (third lf) bindings state))
(function (second lf) bindings state)))
((and) (fuck-up))
((some)
(map-reduce
append