From 57909cccc6eb7ff544c91734462fd7b1e44f8322 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Micha=C5=82=20Zientkiewicz?= Date: Fri, 27 Sep 2024 15:29:49 +0200 Subject: [PATCH] Fix CPU resize with mixed NN/other resampling filters. (#5647) * Fix size computation (handle negative support size) * Add regression tests --------- Signed-off-by: Michal Zientkiewicz --- dali/kernels/imgproc/resample/separable_cpu.h | 4 +- dali/test/python/operator_2/test_resize.py | 46 +++++++++++++++++++ 2 files changed, 48 insertions(+), 2 deletions(-) diff --git a/dali/kernels/imgproc/resample/separable_cpu.h b/dali/kernels/imgproc/resample/separable_cpu.h index 0ccfd713b87..1771e67ffcf 100644 --- a/dali/kernels/imgproc/resample/separable_cpu.h +++ b/dali/kernels/imgproc/resample/separable_cpu.h @@ -1,4 +1,4 @@ -// Copyright (c) 2019-2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +// Copyright (c) 2019-2021, 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. @@ -96,7 +96,7 @@ struct ResamplingSetupCPU : SeparableResamplingSetup<_spatial_ndim> { for (int stage = 0; stage < num_stages; stage++) { size_t extent = resized_dim_extent(stage); - size_t support = filter_support(stage); + int support = std::max(0, filter_support(stage)); // support() returns -1 for NN interp. size_t num_coeffs = extent * support; if (extent > req.indices_size) diff --git a/dali/test/python/operator_2/test_resize.py b/dali/test/python/operator_2/test_resize.py index 11280599dac..fc4e05a6442 100644 --- a/dali/test/python/operator_2/test_resize.py +++ b/dali/test/python/operator_2/test_resize.py @@ -843,6 +843,52 @@ def resize_pipe(): assert np.max(np.abs(out - large_data_resized)) < 2 +@params(("cpu", 0), ("cpu", 1), ("gpu", 0), ("gpu", 1)) +def test_nn_on_one_axis(device, axis): + # Checks whether having NN interpolation in one axis and full resampling in the other works + data = np.array( + [ + [0, 0, 0], + [0, 1, 0], + [0, 2, 0], + ], + dtype=np.float32, + ) + + # magnification is NN, minification is triangular + ref = np.array( + [ + [0, 0, 0.3333334, 0.3333334, 0, 0], + [0, 0, 1.6666667, 1.6666667, 0, 0], + ], + dtype=np.float32, + ) + + if axis == 1: + data = np.transpose(data, (1, 0)) + ref = np.transpose(ref, (1, 0)) + + # add channel + data = data[..., np.newaxis] + ref = ref[..., np.newaxis] + + @pipeline_def(batch_size=1, device_id=0, num_threads=1) + def test_pipe(): + src = dali.types.Constant(data, device=device) + return fn.resize( + src, + size=ref.shape[:-1], + min_filter=dali.types.INTERP_LINEAR, + mag_filter=dali.types.INTERP_NN, + antialias=True, + ) + + pipe = test_pipe() + pipe.build() + (out,) = pipe.run() + check_batch(out, [ref], 1, 1e-5, 1e-5, None, False) + + def test_checkerboard_dali_vs_onnx_ref(): improc_data_dir = os.path.join(test_data_root, "db", "imgproc") ref_dir = os.path.join(improc_data_dir, "ref", "resampling")