-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
photo_gif.py
46 lines (38 loc) · 1.46 KB
/
photo_gif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import division
from PIL import Image
from torch import nn
import numpy as np
import cv2
from cv2.ximgproc import guidedFilter
class GIFSmoothing(nn.Module):
def forward(self, *input):
pass
def __init__(self, r, eps):
super(GIFSmoothing, self).__init__()
self.r = r
self.eps = eps
def process(self, initImg, contentImg):
return self.process_opencv(initImg, contentImg)
def process_opencv(self, initImg, contentImg):
'''
:param initImg: intermediate output. Either image path or PIL Image
:param contentImg: content image output. Either path or PIL Image
:return: stylized output image. PIL Image
'''
if type(initImg) == str:
init_img = cv2.imread(initImg)
init_img = init_img[2:-2,2:-2,:]
else:
init_img = np.array(initImg)[:, :, ::-1].copy()
if type(contentImg) == str:
cont_img = cv2.imread(contentImg)
else:
cont_img = np.array(contentImg)[:, :, ::-1].copy()
output_img = guidedFilter(guide=cont_img, src=init_img, radius=self.r, eps=self.eps)
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2RGB)
output_img = Image.fromarray(output_img)
return output_img