forked from danielricks/penseur
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_trec.py
122 lines (99 loc) · 3.2 KB
/
eval_trec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
'''
Evaluation code for the TREC dataset
'''
import numpy as np
import skipthoughts
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import KFold
from sklearn.utils import shuffle
def evaluate(model, k=10, seed=1234, evalcv=True, evaltest=False):
"""
Run experiment
k: number of CV folds
test: whether to evaluate on test set
"""
print 'Preparing data...'
traintext, testtext = load_data()
train, train_labels = prepare_data(traintext)
test, test_labels = prepare_data(testtext)
train_labels = prepare_labels(train_labels)
test_labels = prepare_labels(test_labels)
train, train_labels = shuffle(train, train_labels, random_state=seed)
print 'Computing training skipthoughts...'
trainF = skipthoughts.encode(model, train, verbose=False, use_eos=False)
if evalcv:
print 'Running cross-validation...'
interval = [2**t for t in range(0,9,1)] # coarse-grained
C = eval_kfold(trainF, train_labels, k=k, scan=interval, seed=seed)
if evaltest:
if not evalcv:
C = 128 # Best parameter found from CV
print 'Computing testing skipthoughts...'
testF = skipthoughts.encode(model, test, verbose=False, use_eos=False)
print 'Evaluating...'
clf = LogisticRegression(C=C)
clf.fit(trainF, train_labels)
yhat = clf.predict(testF)
print 'Test accuracy: ' + str(clf.score(testF, test_labels))
def load_data(loc='./data/'):
"""
Load the TREC question-type dataset
"""
train, test = [], []
with open(loc + 'train_5500.label', 'rb') as f:
for line in f:
train.append(line.strip())
with open(loc + 'TREC_10.label', 'rb') as f:
for line in f:
test.append(line.strip())
return train, test
def prepare_data(text):
"""
Prepare data
"""
labels = [t.split()[0] for t in text]
labels = [l.split(':')[0] for l in labels]
X = [t.split()[1:] for t in text]
X = [' '.join(t) for t in X]
return X, labels
def prepare_labels(labels):
"""
Process labels to numerical values
"""
d = {}
count = 0
setlabels = set(labels)
for w in setlabels:
d[w] = count
count += 1
idxlabels = np.array([d[w] for w in labels])
return idxlabels
def eval_kfold(features, labels, k=10, scan=[2**t for t in range(0,9,1)], seed=1234):
"""
Perform k-fold cross validation
"""
npts = len(features)
kf = KFold(npts, n_folds=k, random_state=seed)
scores = []
for s in scan:
scanscores = []
for train, test in kf:
# Split data
X_train = features[train]
y_train = labels[train]
X_test = features[test]
y_test = labels[test]
# Train classifier
clf = LogisticRegression(C=s)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
scanscores.append(score)
print (s, score)
# Append mean score
scores.append(np.mean(scanscores))
print scores
# Get the index of the best score
s_ind = np.argmax(scores)
s = scan[s_ind]
print (s_ind, s)
return s