-
Notifications
You must be signed in to change notification settings - Fork 1
/
densenet.py
127 lines (109 loc) · 5.17 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
# This implementation is based on the DenseNet-BC implementation in torchvision
# https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
# Borrowed from https://docs.gpytorch.ai/en/stable/examples/06_PyTorch_NN_Integration_DKL/Deep_Kernel_Learning_DenseNet_CIFAR_Tutorial.html
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module("norm1", nn.BatchNorm2d(num_input_features)),
self.add_module("relu1", nn.ReLU(inplace=True)),
self.add_module(
"conv1", nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)
),
self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module("relu2", nn.ReLU(inplace=True)),
self.add_module(
"conv2", nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)
),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module("norm", nn.BatchNorm2d(num_input_features))
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("conv", nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False))
self.add_module("pool", nn.AvgPool2d(kernel_size=2, stride=2))
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module("denselayer%d" % (i + 1), layer)
class DenseNet(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 3 or 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(
self,
# growth_rate=12,
# block_config=(16, 16, 16),
# compression=0.5,
# num_init_features=24,
# bn_size=4,
# drop_rate=0,
# avgpool_size=8,
# num_classes=10, # densenet161 # growth_rate = 48, num_init_features= 96, config = (6,12,36,24)
growth_rate=12,
block_config=(6, 12, 36, 24),
compression=0.5,
num_init_features=24,
bn_size=4,
drop_rate=0,
avgpool_size=8,
num_classes=2
):
super(DenseNet, self).__init__()
assert 0 < compression <= 1, "compression of densenet should be between 0 and 1"
self.avgpool_size = avgpool_size
# First convolution
self.features = nn.Sequential(
OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=3, stride=1, padding=1, bias=False))])
)
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(
num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
)
self.features.add_module("denseblock%d" % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(
num_input_features=num_features, num_output_features=int(num_features * compression)
)
self.features.add_module("transition%d" % (i + 1), trans)
num_features = int(num_features * compression)
# Final batch norm
self.features.add_module("norm_final", nn.BatchNorm2d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
# if special:
# out = F.adaptive_avg_pool2d(out, output_size=(1, 1)).view(features.size(0), -1)
# else:
out = F.avg_pool2d(out, kernel_size=self.avgpool_size).view(features.size(0), -1)
out = self.classifier(out)
return out