Skip to content

Latest commit

 

History

History
237 lines (213 loc) · 11 KB

README.md

File metadata and controls

237 lines (213 loc) · 11 KB

Ajou-DL-Challenge-2024

  • SW중심대학연합 제3회 아주 소중한 딥러닝 챌린지 (24.07.26. ~ 24.08.30.)
  • Public, Private score 1st
  • Zero-shot classification

private

Reference

Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer and Christoph Feichtenhofer

Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang and Xinlong Wang

발표 자료

슬라이드1 슬라이드2 슬라이드3
슬라이드4 슬라이드5 슬라이드6
슬라이드7 슬라이드8 슬라이드9
슬라이드10 슬라이드11 슬라이드12
슬라이드13 슬라이드14

Pre-Processing

processor_20 = T.Compose(
    [
         T.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
         T.CenterCrop(size=(224, 224)),
         T.Lambda(lambda img: img.convert('RGB')),
         RandomAdjustSharpness(2, p=1),
         T.ToTensor(),
         T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
     ]
)
processor_23 = T.Compose(
    [
         T.Resize((224, 224), interpolation=InterpolationMode.BICUBIC),
         T.CenterCrop(size=(224, 224)),
         T.Lambda(lambda img: img.convert('RGB')),
         RandomAdjustSharpness(2.3, p=1),
         T.ToTensor(),
         T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
     ]
)

dataset의 이미지들이 블러 처리가 된 이미지인 것을 확인, RandomAdjustSharpness를 적용해 보았고, 이를 통해 약 1%의 성능 향상(public 기준)이 있음을 알 수 있었음. torchvision.transforms.functional.adjust_sharpness으로도 대체 가능할 것으로 보임.

Prompt-Tuning

  • 주요 프롬프트
    prompts.append(f"a blurry photo of a {class_name}")
    prompts.append(f"a blurry image of a {class_name}")
    prompts.append(f"a blurred photo of a {class_name}")
    prompts.append(f"a blurred image of a {class_name}")

ChatGPT 서비스에 dataset의 이미지 10장을 임의로 골라 설명을 시켰을 때, blur라는 단어가 공통적으로 들어감을 확인. 이에 착안해 위의 프롬프트들을 사용하였고 약 1%(public 기준)의 성능 향상을 가져올 수 있었음.

  • 전체
prompts = []
for class_name in class_names:
    prompts.append(f"{class_name}")
    prompts.append(f"a photo of a {class_name}")
    prompts.append(f"a image of a {class_name}")
    prompts.append(f"art of the {class_name}")
    prompts.append(f"a blurry photo of a {class_name}")
    prompts.append(f"a blurry image of a {class_name}")
    prompts.append(f"a blurred photo of a {class_name}")
    prompts.append(f"a blurred image of a {class_name}")
    prompts.extend([
        f'a bad photo of a {class_name}.',
        f'a photo of many {class_name}.',
        f'a photo of the hard to see {class_name}.',
        f'a low resolution photo of the {class_name}.',
        f'a bad photo of the {class_name}.',
        f'a cropped photo of the {class_name}.',
        f'a photo of a hard to see {class_name}.',
        f'a bright photo of a {class_name}.',
        f'a photo of a clean {class_name}.',
        f'a photo of a dirty {class_name}.',
        f'a dark photo of the {class_name}.',
        f'a photo of my {class_name}.',
        f'a photo of the cool {class_name}.',
        f'a bright photo of the {class_name}.',
        f'a cropped photo of a {class_name}.',
        f'a photo of the dirty {class_name}.',
        f'a jpeg corrupted photo of a {class_name}.',
        f'a blurry photo of the {class_name}.',
        f'a photo of the {class_name}.',
        f'a good photo of the {class_name}.',
        f'a rendering of the {class_name}.',
        f'a {class_name} in a video game.',
        f'a photo of one {class_name}.',
        f'a close-up photo of the {class_name}.',
        f'the {class_name} in a video game.',
        f'a sketch of a {class_name}.',
        f'a low resolution photo of a {class_name}.',
        f'a photo of the clean {class_name}.',
        f'a photo of a large {class_name}.',
        f'a photo of a nice {class_name}.',
        f'a photo of a weird {class_name}.',
        f'a sketch of the {class_name}.',
        f'a jpeg corrupted photo of the {class_name}.',
        f'a good photo of a {class_name}.',
        f'a photo of the nice {class_name}.',
        f'a photo of the small {class_name}.',
        f'a photo of the weird {class_name}.',
        f'a drawing of the {class_name}.',
        f'a photo of the large {class_name}.',
        f'a dark photo of a {class_name}.',
        f'a photo of a small {class_name}.'
    ])

    if class_name == "Buildings":
        prompts.extend([
            "A picture of an urban area with buildings",
            "An architectural structure in the city",
            "The Windows"
        ])
    elif class_name == "Forests":
        prompts.extend([
            "A picture of a dense forest with trees",
            "A scenic view of a forest landscape",
            "A picture of the Trees"
        ])
    elif class_name == "Glacier":
        prompts.extend([
            "A picture of an ice",
            "A scenic view of a snowy glacier",
            "A scenic view of some snow in the mountains"
        ])
    elif class_name == "Mountains":
        prompts.extend([
            "A picture of a mountain range",
            "A scenic view of the mountains",
            "A stunning panorama of rugged mountain cliffs"
        ])
    elif class_name == "Sea":
        prompts.extend([
            "A picture of water",
            "A picture of the ocean",
            "A scenic view of the sea and waves"
        ])
    elif class_name == "Street":
        prompts.extend([
            "A picture of a road",
            "A picture of a busy street in the city",
            "An urban street with buildings and cars"
        ])

Load Pre-Trained Models

MetaCLIP (ViT-bigG-14-quickgelu)

model = open_clip.create_model('ViT-bigG-14-quickgelu', pretrained='metaclip_2_5b').to(device)

EVA-CLIP-18B (EVA-CLIP-18B)

model = AutoModel.from_pretrained(
    'BAAI/EVA-CLIP-18B',
    torch_dtype=torch.float16,
    trust_remote_code=True).to('cuda').eval()

DataLoader

For MetaCLIP

ds_meta = ImageFolder(os.path.join(root, dataset_name), transform=processor_23)
ds_meta.samples = natsorted(ds_meta.samples)
dl_meta = DataLoader(ds_meta, shuffle=False, batch_size=32, num_workers=2)

For EVA-CLIP

ds_eva = ImageFolder(os.path.join(root, dataset_name), transform=processor_20)
ds_eva.samples = natsorted(ds_eva.samples)
dl_eva = DataLoader(ds_eva, shuffle=False, batch_size=32, num_workers=2)

Zero-shot Classification

For MetaCLIP

meta_probs_list = []

with torch.no_grad(), torch.cuda.amp.autocast():
    text = tokenizer.tokenize(prompts).to(device)
    text_features = model.encode_text(text)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    for x, y in tqdm(dl_meta):
        x = x.to(device)
        image_features = model.encode_image(x)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        zero_shot_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
        meta_probs_list += zero_shot_probs

For EVA-CLIP

eva_probs_list = []

with torch.no_grad(), torch.cuda.amp.autocast():
    text = tokenizer(prompts, return_tensors='pt', padding=True).input_ids.to('cuda')
    text_features = model.encode_text(text)
    text_features /= text_features.norm(dim=-1, keepdim=True)

    for x, y in tqdm(dl_eva):
        x = x.to(device)
        image_features = model.encode_image(x)
        image_features /= image_features.norm(dim=-1, keepdim=True)

        zero_shot_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
        eva_probs_list += zero_shot_probs

Enassemble

MetaCLIP * 0.5 + EVA-CLIP * 0.5

ensembled_probs_list = [meta_probs * 0.5 + eva_probs * 0.5 for meta_probs, eva_probs in zip(meta_probs_list, eva_probs_list)]
label_list = [ensembled_probs.reshape(len(class_names), -1).mean(dim=-1).max(dim=-1)[1].tolist() for ensembled_probs in ensembled_probs_list]

Drop <=0.002

ensembled_probs_list = [torch.where(ensembled_probs > 0.002, ensembled_probs, 0) for ensembled_probs in ensembled_probs_list]

public에서는 0.002 이하의 값들을 전부 0으로 만든 것이 0.1%의 성능 향상을 보여 적용해보았으나, 이후 private에서는 의미가 없거나 오히려 하락하는 모습을 보였음.