-
Notifications
You must be signed in to change notification settings - Fork 11
/
inference.py
181 lines (137 loc) · 6.01 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# -*- coding: utf-8 -*-
import os
import time
from collections import OrderedDict
from typing import Optional, List
import argparse
from functools import partial
from einops import repeat, rearrange
import numpy as np
from PIL import Image
import trimesh
import cv2
import torch
import pytorch_lightning as pl
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
from michelangelo.models.tsal.inference_utils import extract_geometry
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
from michelangelo.utils.visualizers import html_util
def load_model(args):
model_config = get_config_from_file(args.config_path)
if hasattr(model_config, "model"):
model_config = model_config.model
model = instantiate_from_config(model_config, ckpt_path=args.ckpt_path)
model = model.cuda()
model = model.eval()
return model
def load_surface(fp):
with np.load(args.pointcloud_path) as input_pc:
surface = input_pc['points']
normal = input_pc['normals']
rng = np.random.default_rng()
ind = rng.choice(surface.shape[0], 4096, replace=False)
surface = torch.FloatTensor(surface[ind])
normal = torch.FloatTensor(normal[ind])
surface = torch.cat([surface, normal], dim=-1).unsqueeze(0).cuda()
return surface
def prepare_image(args, number_samples=2):
image = cv2.imread(f"{args.image_path}")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_pt = torch.tensor(image).float()
image_pt = image_pt / 255 * 2 - 1
image_pt = rearrange(image_pt, "h w c -> c h w")
image_pt = repeat(image_pt, "c h w -> b c h w", b=number_samples)
return image_pt
def save_output(args, mesh_outputs):
os.makedirs(args.output_dir, exist_ok=True)
for i, mesh in enumerate(mesh_outputs):
mesh.mesh_f = mesh.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
name = str(i) + "_out_mesh.obj"
mesh_output.export(os.path.join(args.output_dir, name), include_normals=True)
print(f'-----------------------------------------------------------------------------')
print(f'>>> Finished and mesh saved in {args.output_dir}')
print(f'-----------------------------------------------------------------------------')
return 0
def reconstruction(args, model, bounds=(-1.25, -1.25, -1.25, 1.25, 1.25, 1.25), octree_depth=7, num_chunks=10000):
surface = load_surface(args.pointcloud_path)
# encoding
shape_embed, shape_latents = model.model.encode_shape_embed(surface, return_latents=True)
shape_zq, posterior = model.model.shape_model.encode_kl_embed(shape_latents)
# decoding
latents = model.model.shape_model.decode(shape_zq)
geometric_func = partial(model.model.shape_model.query_geometry, latents=latents)
# reconstruction
mesh_v_f, has_surface = extract_geometry(
geometric_func=geometric_func,
device=surface.device,
batch_size=surface.shape[0],
bounds=bounds,
octree_depth=octree_depth,
num_chunks=num_chunks,
)
recon_mesh = trimesh.Trimesh(mesh_v_f[0][0], mesh_v_f[0][1])
# save
os.makedirs(args.output_dir, exist_ok=True)
recon_mesh.export(os.path.join(args.output_dir, 'reconstruction.obj'))
print(f'-----------------------------------------------------------------------------')
print(f'>>> Finished and mesh saved in {os.path.join(args.output_dir, "reconstruction.obj")}')
print(f'-----------------------------------------------------------------------------')
return 0
def image2mesh(args, model, guidance_scale=7.5, box_v=1.1, octree_depth=7):
sample_inputs = {
"image": prepare_image(args)
}
mesh_outputs = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth,
)[0]
save_output(args, mesh_outputs)
return 0
def text2mesh(args, model, num_samples=2, guidance_scale=7.5, box_v=1.1, octree_depth=7):
sample_inputs = {
"text": [args.text] * num_samples
}
mesh_outputs = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth,
)[0]
save_output(args, mesh_outputs)
return 0
task_dick = {
'reconstruction': reconstruction,
'image2mesh': image2mesh,
'text2mesh': text2mesh,
}
if __name__ == "__main__":
'''
1. Reconstruct point cloud
2. Image-conditioned generation
3. Text-conditioned generation
'''
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, choices=['reconstruction', 'image2mesh', 'text2mesh'], required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--pointcloud_path", type=str, default='./example_data/surface.npz', help='Path to the input point cloud')
parser.add_argument("--image_path", type=str, help='Path to the input image')
parser.add_argument("--text", type=str, help='Input text within a format: A 3D model of motorcar; Porsche 911.')
parser.add_argument("--output_dir", type=str, default='./output')
parser.add_argument("-s", "--seed", type=int, default=0)
args = parser.parse_args()
pl.seed_everything(args.seed)
print(f'-----------------------------------------------------------------------------')
print(f'>>> Running {args.task}')
args.output_dir = os.path.join(args.output_dir, args.task)
print(f'>>> Output directory: {args.output_dir}')
print(f'-----------------------------------------------------------------------------')
task_dick[args.task](args, load_model(args))